-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.R
118 lines (104 loc) · 3.67 KB
/
functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Convert REDCAP event name into survey number
which_event <- function(x) {
if_else(x == "enrolment_arm_1",
"0",
str_replace(x, "_month_assessmen[t]*_arm_1", ""))
}
# Winsorize extreme values
winsor <- function(x, at = c(-5, 5)) {
x[x < at[1]] <- at[1]
x[x > at[2]] <- at[2]
return(x)
}
print_n <- function(d) {
cat("\nNo. participants: ", length(unique(d$pid)),
"\nNo. observations: ", nrow(d), "\n\n")
}
# Function to collapse a vector of covariates into formula
cc <- function(x) {
if (x[1] == "") {
return("")
} else {
return(paste0(" + ", paste(x, collapse = " + ")))
}
}
derive_midpoint <- function(start, stop) {
half <- round(0.5 * (interval(start, stop) / minutes(1)))
midpoint <- start + minutes(half)
return(hour(midpoint) + (minute(midpoint) / 60))
}
calculate_median <- function(x) {
if (is.logical(x)) {
return(as.logical(median(x, na.rm = TRUE)))
} else if (is.numeric(x) ) {
return(median(x, na.rm = TRUE))
} else {
stop("Must be logical or numeric")
}
}
construct_datagrid <- function(fit, y, x, r) {
# Construct a data frame over which to compute the predictions.
# Calculates the median of each variable.
nd <- insight::get_data(fit)
nd <- select(nd, -pid, -all_of(c({{x}}, {{y}})))
nd <- summarise(nd, across(everything(), calculate_median))
nd <- uncount(nd, length(r))
nd[[x]] <- r
return(nd)
}
make_names <- function(model_list) {
pmap_chr(model_list, ~ str_glue("{..1}__{..2}__{ifelse(length(..3) > 1, 'adj', 'unadj')}"))
}
extract_adjusted_predictions <- function(fit,
y,
x,
adj,
cent,
days) {
# Construct data frame for predictions
suffix <- if_else(cent == "gm", "gmz", "pmz")
x <- str_glue("{days}_{x}_{suffix}")
cat(".")
nd <- construct_datagrid(fit, y, x, r = seq(-2, 2, 0.1))
# Generate predictions, using brms::posterior_epred
predictions(fit,
newdata = nd,
type = "response",
re_formula = NA) |>
posterior_draws() |>
select(all_of(c(x, "draw")))
}
# Difference between start of sleep and [that person's] median start of
# sleep [within this time period]. Variance value of days within time
# period.
tdiff <- function(i) {
start_time <- as.POSIXct(i[[1]] * 3600, origin = i[1])
end_time <- as.POSIXct(i[[2]] * 3600, origin = i[2])
return(as.numeric(difftime(start_time,
end_time,
units = "hours")))
}
clock_diff <- function(i) {
# This isn't pretty, but...
# ---------------------------------------------------------------------------
# I needed away to calculate the difference between two 24 hour clocks. i.e.
# 23 vs. 02 = +3
# 05 vs. 21 = -8
# The approach taken here is to find the smallest interval between 'a' and
# and 'b' assuming that these clock times are:
# i. On the same day
# ii. 'a' is day before 'b'
# iii. 'b' is day before 'a'
# The function then returns the smallest absolute interval
opts <- list(c("2021-01-01", "2021-01-01"), # i.
c("2021-01-01", "2021-01-02"), # ii.
c("2021-01-02", "2021-01-01")) # iii.
res <- vector(length = 3)
for (o in seq_along(opts)) {
end_time <- as.POSIXct(i[1] * 3600, origin = opts[[o]][1])
start_time <- as.POSIXct(i[2] * 3600, origin = opts[[o]][2])
res[o] <- as.numeric(difftime(start_time, end_time, units = "hours"))
}
return(as.numeric(res[which(abs(res) == min(abs(res)))])[1])
}
ds <- function() format(Sys.time(), "%Y-%m-%d-%H-%M")