forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_training_utils.py
363 lines (305 loc) · 14 KB
/
model_training_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities to train BERT models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
from absl import logging
import tensorflow as tf
SUMMARY_TXT = 'training_summary.txt'
def get_primary_cpu_task(use_remote_tpu=False):
"""Returns primary CPU task to which input pipeline Ops are put."""
# Remote Eager Borg job configures the TPU worker with job name 'worker'.
return '/job:worker' if use_remote_tpu else ''
def _save_checkpoint(checkpoint, model_dir, checkpoint_prefix):
"""Saves model to with provided checkpoint prefix."""
checkpoint_path = os.path.join(model_dir, checkpoint_prefix)
saved_path = checkpoint.save(checkpoint_path)
logging.info('Saving model as TF checkpoint: %s', saved_path)
return
def _get_input_iterator(input_fn, strategy):
"""Returns distributed dataset iterator."""
# When training with TPU pods, datasets needs to be cloned across
# workers. Since Dataset instance cannot be cloned in eager mode, we instead
# pass callable that returns a dataset.
input_data = input_fn()
if callable(input_data):
iterator = iter(
strategy.experimental_distribute_datasets_from_function(input_data))
else:
iterator = iter(strategy.experimental_distribute_dataset(input_data))
return iterator
def _float_metric_value(metric):
"""Gets the value of a float-value keras metric."""
return metric.result().numpy().astype(float)
def _steps_to_run(current_step, steps_per_epoch, steps_per_loop):
"""Calculates steps to run on device."""
if steps_per_loop <= 0:
raise ValueError('steps_per_loop should be positive integer.')
if steps_per_loop == 1:
return steps_per_loop
remainder_in_epoch = current_step % steps_per_epoch
if remainder_in_epoch != 0:
return min(steps_per_epoch - remainder_in_epoch, steps_per_loop)
else:
return steps_per_loop
def run_customized_training_loop(
# pylint: disable=invalid-name
_sentinel=None,
# pylint: enable=invalid-name
strategy=None,
model_fn=None,
loss_fn=None,
model_dir=None,
train_input_fn=None,
steps_per_epoch=None,
steps_per_loop=1,
epochs=1,
eval_input_fn=None,
eval_steps=None,
metric_fn=None,
init_checkpoint=None,
use_remote_tpu=False,
custom_callbacks=None):
"""Run BERT pretrain model training using low-level API.
Arguments:
_sentinel: Used to prevent positional parameters. Internal, do not use.
strategy: Distribution strategy on which to run low level training loop.
model_fn: Function that returns a tuple (model, sub_model). Caller of this
function should add optimizer to the `model` via calling
`model.compile()` API or manually setting `model.optimizer` attribute.
Second element of the returned tuple(sub_model) is an optional sub model
to be used for initial checkpoint -- if provided.
loss_fn: Function with signature func(labels, logits) and returns a loss
tensor.
model_dir: Model directory used during training for restoring/saving model
weights.
train_input_fn: Function that returns a tf.data.Dataset used for training.
steps_per_epoch: Number of steps to run per epoch. At the end of each
epoch, model checkpoint will be saved and evaluation will be conducted
if evaluation dataset is provided.
steps_per_loop: Number of steps per graph-mode loop. In order to reduce
communication in eager context, training logs are printed every
steps_per_loop.
epochs: Number of epochs to train.
eval_input_fn: Function that returns evaluation dataset. If none,
evaluation is skipped.
eval_steps: Number of steps to run evaluation. Required if `eval_input_fn`
is not none.
metric_fn: A metrics function that returns a Keras Metric object to record
evaluation result using evaluation dataset or with training dataset
after every epoch.
init_checkpoint: Optional checkpoint to load to `sub_model` returned by
`model_fn`.
use_remote_tpu: If true, input pipeline ops are placed in TPU worker host
as an optimization.
custom_callbacks: A list of Keras Callbacks objects to run during
training. More specifically, `on_batch_begin()`, `on_batch_end()`,
methods are invoked during training.
Returns:
Trained model.
Raises:
ValueError: (1) When model returned by `model_fn` does not have optimizer
attribute or when required parameters are set to none. (2) eval args are
not specified correctly. (3) metric_fn must be a callable if specified.
"""
if _sentinel is not None:
raise ValueError('only call `run_customized_training_loop()` '
'with named arguments.')
required_arguments = [
strategy, model_fn, loss_fn, model_dir, steps_per_epoch, train_input_fn
]
if [arg for arg in required_arguments if arg is None]:
raise ValueError('`strategy`, `model_fn`, `loss_fn`, `model_dir`, '
'`steps_per_loop` and `steps_per_epoch` are required '
'parameters.')
if steps_per_loop > steps_per_epoch:
logging.error(
'steps_per_loop: %d is specified to be greater than '
' steps_per_epoch: %d, we will use steps_per_epoch as'
' steps_per_loop.', steps_per_loop, steps_per_epoch)
steps_per_loop = steps_per_epoch
assert tf.executing_eagerly()
if eval_input_fn and (eval_steps is None or metric_fn is None):
raise ValueError(
'`eval_step` and `metric_fn` are required when `eval_input_fn ` '
'is not none.')
if metric_fn and not callable(metric_fn):
raise ValueError(
'if `metric_fn` is specified, metric_fn must be a callable.')
# To reduce unnecessary send/receive input pipeline operation, we place input
# pipeline ops in worker task.
with tf.device(get_primary_cpu_task(use_remote_tpu)):
train_iterator = _get_input_iterator(train_input_fn, strategy)
with strategy.scope():
total_training_steps = steps_per_epoch * epochs
# To correctly place the model weights on accelerators,
# model and optimizer should be created in scope.
model, sub_model = model_fn()
if not hasattr(model, 'optimizer'):
raise ValueError('User should set optimizer attribute to model '
'inside `model_fn`.')
optimizer = model.optimizer
if init_checkpoint:
logging.info(
'Checkpoint file %s found and restoring from '
'initial checkpoint for core model.', init_checkpoint)
checkpoint = tf.train.Checkpoint(model=sub_model)
checkpoint.restore(init_checkpoint).assert_consumed()
logging.info('Loading from checkpoint file completed')
train_loss_metric = tf.keras.metrics.Mean(
'training_loss', dtype=tf.float32)
eval_metric = metric_fn() if metric_fn else None
# If evaluation is required, make a copy of metric as it will be used by
# both train and evaluation.
train_metric = (
eval_metric.__class__.from_config(eval_metric.get_config())
if eval_metric else None)
def _replicated_step(inputs):
"""Replicated training step."""
inputs, labels = inputs
with tf.GradientTape() as tape:
model_outputs = model(inputs)
loss = loss_fn(labels, model_outputs)
tvars = model.trainable_variables
grads = tape.gradient(loss, tvars)
optimizer.apply_gradients(zip(grads, tvars))
# For reporting, the metric takes the mean of losses.
train_loss_metric.update_state(loss)
if train_metric:
train_metric.update_state(labels, model_outputs)
@tf.function
def train_steps(iterator, steps):
"""Performs distributed training steps in a loop.
Args:
iterator: the distributed iterator of training datasets.
steps: an tf.int32 integer tensor to specify number of steps to run
inside host training loop.
Raises:
ValueError: Any of the arguments or tensor shapes are invalid.
"""
if not isinstance(steps, tf.Tensor):
raise ValueError('steps should be an Tensor. Python object may cause '
'retracing.')
for _ in tf.range(steps):
strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))
@tf.function
def train_single_step(iterator):
"""Performs a distributed training step.
Args:
iterator: the distributed iterator of training datasets.
Raises:
ValueError: Any of the arguments or tensor shapes are invalid.
"""
strategy.experimental_run_v2(_replicated_step, args=(next(iterator),))
@tf.function
def test_step(iterator):
"""Calculates evaluation metrics on distributed devices."""
def _test_step_fn(inputs):
"""Replicated accuracy calculation."""
inputs, labels = inputs
model_outputs = model(inputs, training=False)
eval_metric.update_state(labels, model_outputs)
strategy.experimental_run_v2(_test_step_fn, args=(next(iterator),))
def _run_evaluation(current_training_step, test_iterator):
"""Runs validation steps and aggregate metrics."""
for _ in range(eval_steps):
test_step(test_iterator)
logging.info('Step: [%d] Validation metric = %f', current_training_step,
_float_metric_value(eval_metric))
def _run_callbacks_on_batch_begin(batch):
"""Runs custom callbacks at the start of every step."""
if not custom_callbacks:
return
for callback in custom_callbacks:
callback.on_batch_begin(batch)
def _run_callbacks_on_batch_end(batch):
"""Runs custom callbacks at the end of every step."""
if not custom_callbacks:
return
for callback in custom_callbacks:
callback.on_batch_end(batch)
# Training loop starts here.
checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
latest_checkpoint_file = tf.train.latest_checkpoint(model_dir)
if latest_checkpoint_file:
logging.info(
'Checkpoint file %s found and restoring from '
'checkpoint', latest_checkpoint_file)
checkpoint.restore(latest_checkpoint_file)
logging.info('Loading from checkpoint file completed')
current_step = optimizer.iterations.numpy()
checkpoint_name = 'ctl_step_{step}.ckpt'
while current_step < total_training_steps:
# Training loss/metric are taking average over steps inside micro
# training loop. We reset the their values before each round.
train_loss_metric.reset_states()
if train_metric:
train_metric.reset_states()
_run_callbacks_on_batch_begin(current_step)
# Runs several steps in the host while loop.
steps = _steps_to_run(current_step, steps_per_epoch, steps_per_loop)
if steps == 1:
# TODO(zongweiz): merge with train_steps once tf.while_loop
# GPU performance bugs are fixed.
train_single_step(train_iterator)
else:
# Converts steps to a Tensor to avoid tf.function retracing.
train_steps(train_iterator,
tf.convert_to_tensor(steps, dtype=tf.int32))
_run_callbacks_on_batch_end(current_step)
current_step += steps
# Updates training logging.
training_status = 'Train Step: %d/%d / loss = %s' % (
current_step, total_training_steps,
_float_metric_value(train_loss_metric))
if train_metric:
training_status += ' training metric = %s' % _float_metric_value(
train_metric)
logging.info(training_status)
# Saves model checkpoints and run validation steps at every epoch end.
if current_step % steps_per_epoch == 0:
# To avoid repeated model saving, we do not save after the last
# step of training.
if current_step < total_training_steps:
_save_checkpoint(checkpoint, model_dir,
checkpoint_name.format(step=current_step))
if eval_input_fn:
logging.info('Running evaluation after step: %s.', current_step)
_run_evaluation(current_step,
_get_input_iterator(eval_input_fn, strategy))
# Re-initialize evaluation metric.
eval_metric.reset_states()
_save_checkpoint(checkpoint, model_dir,
checkpoint_name.format(step=current_step))
if eval_input_fn:
logging.info('Running final evaluation after training is complete.')
_run_evaluation(current_step,
_get_input_iterator(eval_input_fn, strategy))
training_summary = {
'total_training_steps': total_training_steps,
'train_loss': _float_metric_value(train_loss_metric),
}
if eval_metric:
training_summary['last_train_metrics'] = _float_metric_value(
train_metric)
training_summary['eval_metrics'] = _float_metric_value(eval_metric)
summary_path = os.path.join(model_dir, SUMMARY_TXT)
with tf.io.gfile.GFile(summary_path, 'wb') as f:
logging.info('Training Summary: \n%s', str(training_summary))
f.write(json.dumps(training_summary, indent=4))
return model