-
Notifications
You must be signed in to change notification settings - Fork 0
/
flightModel.m
290 lines (253 loc) · 9.52 KB
/
flightModel.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
function [h_end,v_end,Ae,q] = flightModel(phi,n_st,n_e,M_prop,M_str)
%% AN ANALITICAL APPROACH OF A ROCKET TRAJECTORY
% Jan Canet, Fabio Meloni
parameters;
% % Definition of parameters
%
% phi_pl = 5; % Payload fairing diameter [m]
% L_pl = 12; % Payload fairing length [m]
% th_pl = 0.005; % Payload fairing thickness [m]
%
% M_pl = 7000; % Payload mass [kg]
%
% M_eng_vac = 500; % Vacuum engine mass [kg]
% M_eng_sl = 470; % Sea level engine mass [kg]
% L_eng_vac = 6; % Longitude of vacuum engine [m]
% L_eng_sl = 3; % Longitude of sea level engine [m]
% rho_prop = 1000; % Density of the propellant [kg/m^3]
%
% alpha = deg2rad(0.5); % Angle of attack [deg->rad]
% g0 = 9.81; % Gravitational acceleration at Earth's surface [m/s^2]
% thrust_1e = 900e3; % Thrust of one SL engine [N]
% SF = 2; % Safety factor
%
% rho = 2550; % Structural material density [kg/m^3]
% E = 77e9; % Young modulus [Pa]
% sig_y = 210e6; % Yield strength [Pa]
% sig_s = 200e6; % Shear strength [Pa]
%
% h_tar = 300e3; % Target orbital altitude [m]
% v_tar = 7.73e3; % Target orbital velocity [m/s]
%% 1) Initial parameters and variables
% Me
Me = sym('Me','real');
gamma = 1.1488;
Ae_At = 21; % Exit to throat area ratio
rel_arees = Ae_At == (2/(gamma+1))^(0.5*(gamma+1)/(gamma-1))*1/Me*(1+(gamma-1)/2*Me^2)^(0.5*(gamma+1)/(gamma-1));
Me_V = vpasolve(rel_arees,Me);
Me_V = double(Me_V); % Exit Mach number
% CF & At
pa_pc = 0.0094; % Initial pressure ratio
CF_vac = (2/(gamma+1))^(0.5*(gamma+1)/(gamma-1))*(gamma*Me_V+1/Me_V)/sqrt(1+(gamma-1)/2*Me_V^2);
MFP_Me = sqrt(gamma)*Me_V/(1+(gamma-1)/2*Me_V^2)^(0.5*(gamma+1)/(gamma-1));
MFP_Mt = sqrt(gamma)*1/(1+(gamma-1)/2*1^2)^(0.5*(gamma+1)/(gamma-1));
CF = CF_vac-pa_pc*MFP_Mt/MFP_Me;
Wp = M_prop*g0; % Initial propellant weight [N]
Ws = M_str*g0; % Initial structural weight [N]
% Wu = 400*g0; % payload weight [N]
Wu = M_pl*g0; % payload weight [N]
W = sum(Wp)+sum(Ws)+Wu; % Initial weight [N]
F = thrust_1e; % Initial thrust [N]
Pc = 10.8e6; % Chamber pressure [Pa]
At = F/(Pc*CF); % Throat area [m^2]
Ae_sl = At*Ae_At;
S = pi*(max(phi)/2)^2; % Rocket's maximum cross-section [m^2]
% MASS FLOW RATE
R = 8.314472; % Universal gas constant [J/molK]
MM = 22.686; % Molecular mass [g/mol]
Rg = R/(MM/1000); % Gas constant [J/kgK]
Tc = 3655.73; % Chamber temperature [K]
m_dot = MFP_Mt*Pc*At/sqrt(Rg*Tc);
%% 2) Initial conditions
h0 = 0.001; % [m]
v0 = 0.001; % [m/s]
ang0 = deg2rad(90); % [deg->rad]
%% 3) Time span and time step
t_span1 = Wp(end)/(m_dot*g0*n_e); % [s]
t_step = 1e-3; % [s]
%% Optimize kick_time and kick_angle
% KICK ANGLE STUFF WHICH NEEDS TO BE AUTOMATED so that the flight path angle reaches 0 before the end of the burn (and stays at zero)!!!
% kick_time = t_span1*0.145; % time before starting gravity turn [s] 35
% kick_angle = deg2rad(9); % kick angle induced for gravity turn [deg->rad] 35
% % Define parameters for the objective function and constraints
% parameters.g0 = g0;
% parameters.W = W;
% parameters.m_dot = m_dot;
% parameters.gamma = gamma;
% parameters.Rg = Rg;
% parameters.CF_vac = CF_vac;
% parameters.Pc = Pc;
% parameters.MFP_Me = MFP_Me;
% parameters.MFP_Mt = MFP_Mt;
% parameters.At = At;
% parameters.S = S;
% parameters.n_e = n_e;
% parameters.t_span1 = t_span1;
% parameters.t_step = t_step;
% parameters.h0 = h0;
% parameters.v0 = v0;
% parameters.ang0 = ang0;
% Initial guess for [kick_time, kick_angle]
x0 = [t_span1 * 0.145, deg2rad(9)];
% % Set optimization options
% options = optimoptions('fmincon', 'Display', 'iter', 'Algorithm', 'interior-point');
% Set optimization options for fminunc with Quasi-Newton method
options = optimoptions('fminunc', 'Display', 'iter', 'Algorithm', 'quasi-newton');
% % Define lower and upper bounds for [kick_time, kick_angle] for fmincon
% lb = [1, deg2rad(1)]; % lower bounds
% ub = [t_span1, deg2rad(60)]; % upper bounds
% Run the optimization
obj_flightangle = @(x) objectiveFlightAngle(x, phi,n_st,n_e,M_prop,M_str);
% % Optimize with fmincon
% x_opt = fmincon(obj_flightangle, x0, [], [], [], [], lb, ub, [], options);
% Run the optimization using fminunc
x_opt = fminunc(obj_flightangle, x0, options);
% Extract optimal values
kick_time_opt = x_opt(1);
kick_angle_opt = x_opt(2);
% Display optimal values
disp(['Optimal kick time: ', num2str(kick_time_opt)]);
disp(['Optimal kick angle: ', num2str(rad2deg(kick_angle_opt))]);
% Use the optimized kick_time and kick_angle in the main script
kick_time = kick_time_opt;
kick_angle = kick_angle_opt;
%% 4) Solver
% FIRST STAGE
t0 = 0;
[t_1st_initial, y_1st_initial] = ode45(@(t,y) Fsyst(t,t0,y,g0,W,m_dot,gamma,Rg,CF_vac,Pc,MFP_Me,MFP_Mt,At,S,n_e), 0:t_step:kick_time, [h0;v0;ang0]);
% Extract final values
final_values = y_1st_initial(end,:); % Final [altitude, velocity, angle]
% New initial conditions for the second integration
h0_new = final_values(1);
v0_new = final_values(2);
ang0_new = ang0-kick_angle;
% ang0_new = final_values(3);
% Solve second system
t0 = kick_time;
[t_1st_final, y_1st_final] = ode45(@(t,y) Fsyst(t,t0,y,g0,W,m_dot,gamma,Rg,CF_vac,Pc,MFP_Me,MFP_Mt,At,S,n_e), kick_time:t_step:t_span1, [h0_new;v0_new;ang0_new]);
% Concatenate time and results for plotting
t_1st_combined = [t_1st_initial; t_1st_final];
y_1st_combined = [y_1st_initial; y_1st_final];
% SECOND STAGE
% Me
Me = sym('Me','real');
gamma = 1.1488;
Ae_At = 116; % Exit to throat area ratio
rel_arees = Ae_At == (2/(gamma+1))^(0.5*(gamma+1)/(gamma-1))*1/Me*(1+(gamma-1)/2*Me^2)^(0.5*(gamma+1)/(gamma-1));
Me_V = vpasolve(rel_arees,Me);
Me_V = double(Me_V); % Exit Mach number
% CF & At
pa_pc = 0.0094; % Initial pressure ratio
CF_vac = (2/(gamma+1))^(0.5*(gamma+1)/(gamma-1))*(gamma*Me_V+1/Me_V)/sqrt(1+(gamma-1)/2*Me_V^2);
MFP_Me = sqrt(gamma)*Me_V/(1+(gamma-1)/2*Me_V^2)^(0.5*(gamma+1)/(gamma-1));
MFP_Mt = sqrt(gamma)*1/(1+(gamma-1)/2*1^2)^(0.5*(gamma+1)/(gamma-1));
CF = CF_vac-pa_pc*MFP_Mt/MFP_Me;
F = thrust_1e; % Initial thrust [N]
Pc = 10.8e6; % Chamber pressure [Pa]
At = F/(Pc*CF); % Throat area [m^2]
Ae_vac = At*Ae_At;
S = pi*(max(phi(1:end-1))/2)^2; % Rocket's maximum cross-section [m^2]
% MASS FLOW RATE
R = 8.314472; % Universal gas constant [J/molK]
MM = 22.686; % Molecular mass [g/mol]
Rg = R/(MM/1000); % Gas constant [J/kgK]
Tc = 3655.73; % Chamber temperature [K]
m_dot = MFP_Mt*Pc*At/sqrt(Rg*Tc);
t_span23 = Wp(1:end-1)./(m_dot*g0); % [s]
second_stage_initial = y_1st_final(end,:); % Final [altitude, velocity, angle]
% New initial conditions for the integration of second stage
h0_2nd = second_stage_initial(1);
v0_2nd = second_stage_initial(2);
ang0_2nd = second_stage_initial(3);
% Solve system of 2nd stage
W = W - Ws(end) - Wp(end);
t0 = t_span1;
[t_2nd, y_2nd] = ode45(@(t,y) Fsyst(t,t0,y,g0,W,m_dot,gamma,Rg,CF_vac,Pc,MFP_Me,MFP_Mt,At,S,1), t_span1:t_step:(t_span1+t_span23(1)), [h0_2nd;v0_2nd;ang0_2nd]);
if (n_st == 3)
% THIRD STAGE
third_stage_initial = y_2nd(end,:); % Final [altitude, velocity, angle]
% New initial conditions for the integration of second stage
h0_3rd = third_stage_initial(1);
v0_3rd = third_stage_initial(2);
ang0_3rd = third_stage_initial(3);
% Solve system of 3rd stage
W = W - Ws(end-1) - Wp(end-1);
t0 = (t_span1+t_span23(end-1));
[t_3rd, y_3rd] = ode45(@(t,y) Fsyst(t,t0,y,g0,W,m_dot,gamma,Rg,CF_vac,Pc,MFP_Me,MFP_Mt,At,S,1), (t_span1+t_span23(1)):t_step:(t_span1+sum(t_span23)), [h0_3rd;v0_3rd;ang0_3rd]);
inertial_stage_initial = y_3rd(end,:);
h0_inr = inertial_stage_initial(1);
v0_inr = inertial_stage_initial(2);
ang0_inr = inertial_stage_initial(3);
[t_inr, y_inr] = ode45(@(t,y) Fsyst2(y), (t_span1+sum(t_span23)):t_step:(t_span1+sum(t_span23))+20, [h0_inr;v0_inr;ang0_inr]);
end
% 5) Postprocess
figure
subplot(3,1,1);
plot(t_1st_combined, y_1st_combined(:,1)/1000,'b')
hold on
plot(t_2nd, y_2nd(:,1)/1000,'g')
if (n_st == 3)
plot(t_3rd, y_3rd(:,1)/1000,'r')
plot(t_inr, y_inr(:,1)/1000,'--k')
end
yline(h_tar/1000, 'y--', 'LineWidth', 1.5);
xlabel('Time [s]')
ylabel('Altitude [km]')
title('Altitude over time')
grid on
subplot(3,1,2);
plot(t_1st_combined, y_1st_combined(:,2)/1000,'b')
hold on
plot(t_2nd, y_2nd(:,2)/1000,'g')
if (n_st == 3)
plot(t_3rd, y_3rd(:,2)/1000,'r')
plot(t_inr, y_inr(:,2)/1000,'--k')
end
yline(v_tar/1000, 'k--', 'LineWidth', 1.5);
xlabel('Time [s]')
ylabel('Velocity [km/s]')
title('Velocity over time')
grid on
subplot(3,1,3);
plot(t_1st_combined, y_1st_combined(:,3) * 180/pi,'b')
hold on
plot(t_2nd, y_2nd(:,3) * 180/pi,'g')
if (n_st == 3)
plot(t_3rd, y_3rd(:,3) * 180/pi,'r')
plot(t_inr, y_inr(:,3) * 180/pi,'--k')
end
yline(0, 'k--', 'LineWidth', 1.5);
xlabel('Time [s]')
ylabel('Flight path angle [°]')
title('Flight path angle over time')
grid on
if (n_st == 3)
h_end = y_3rd(end,1);
v_end = y_3rd(end,2);
Ae = [Ae_vac,Ae_sl];
else
h_end = y_2nd(end,1);
v_end = y_2nd(end,2);
Ae = [Ae_vac,Ae_sl];
end
% Maximum Dynamic Pressure
if (n_st == 3)
altitude = [y_1st_combined(:,1); y_2nd(:,1); y_3rd(:,1)];
velocity = [y_1st_combined(:,2); y_2nd(:,2); y_3rd(:,2)];
time = [t_1st_combined; t_2nd; t_3rd];
else
altitude = [y_1st_combined(:,1); y_2nd(:,1)];
velocity = [y_1st_combined(:,2); y_2nd(:,2)];
time = [t_1st_combined; t_2nd];
end
for i = 1:length(altitude)
[~, density(i), ~] = Compute_P_rho_Text(altitude(i));
end
dyn_pressure = 0.5*density.'.*velocity.^2;
q = max(dyn_pressure);
figure
plot(time,dyn_pressure/1000)
xlabel('Time [s]')
ylabel('Dynamic Pressure [kPa]')
title('Dynamic pressure over time')
grid on