Our hande module provides 3D hand motion capture output. We use the HMR model, trained with several public hand pose datasets, the SOTA peformance among single-image based methods. See our FrankMocap paper for details.
- Run the following. The mocap output will be shown on your screen
# Using a machine with a monitor to show output on screen
# OpenGL renderer is used by default (--renderer_type opengl)
# The output images are also saved in ./mocap_output
python -m demo.demo_handmocap --input_path ./sample_data/single_totalbody.mp4 --out_dir ./mocap_output
# Screenless mode (e.g., a remote server)
xvfb-run -a python -m demo.demo_handmocap --input_path ./sample_data/single_totalbody.mp4 --out_dir ./mocap_output
# Set other render_type to use other renderers
python -m demo.demo_handmocap --input_path ./sample_data/han_hand_short.single_totalbody.mp4 --out_dir ./mocap_output --renderer_type pytorch3d
- Run,
python -m demo.demo_handmocap --input_path webcam #or using opengl gui renderer python -m demo.demo_handmocap --input_path webcam --renderer_type opengl_gui
- See below to see how to control in opengl gui mode
- For 3D hand pose estimation in egocentric views, use --view_type ego_centric
# with Screen python -m demo.demo_handmocap --input_path ./sample_data/han_hand_short.mp4 --out_dir ./mocap_output --view_type ego_centric # Screenless mode (e.g., a remote server) xvfb-run -a python -m demo.demo_handmocap --input_path ./sample_data/han_hand_short.mp4 --out_dir ./mocap_output --view_type ego_centric
- We use a different hand detector adjusted for egocentric views, but the 3D hand pose regressor is the same. By default, hand module assumes
third_view
- While opengl would be faster, it requires a screen connected to your machine. You may try screenless rendering or other rendering options described below.
- Screenless Opengl Rendering
- If you do not have a screen attached in your machine (e.g., remote servers), use xvfb-run tool
# The output images are also saved in ./mocap_output xvfb-run -a python -m demo.demo_handmocap --input_path ./sample_data/han_hand_short.mp4 --out_dir ./mocap_output --renderer_type opengl
- Pytorch3D
- We use pytorch3d only for rendering purpose.
- Run the following command to use pytorch3d renderer
python -m demo.demo_handmocap --input_path ./sample_data/han_hand_short.mp4 --out_dir ./mocap_output --renderer_type pytorch3d
- OpenDR
- Alternatively, run the following command to use opendr renderer
python -m demo.demo_handmocap --input_path ./sample_data/han_hand_short.mp4 --out_dir ./mocap_output --renderer_type opendr
- In OpenGL GUI visualization mode, you can use mouse and keyboard to change view point.
- This mode requires a screen connected to your machine
- Keys in OpenGL 3D window
- mouse-Left: view rotation
- mouse-Right: view zoom chnages
- shift+ mouseLeft: view pan
- C: toggle for image view/3D free view
- w: toggle wireframe/solid mesh
- j: toggle skeleton visualization
- R: automatically rotate views
- f: toggle floordrawing
- q: exit program
- You can use the precomputed bboxes without running any detectors. Save bboxes for each image as a json format. Each json should contain the input image path.
- Assuming your bboxes are
/your/bbox_dir/XXX.json
python -m demo.demo_handmocap --input_path /your/bbox_dir --out_dir ./mocap_output
- Bbox format (json)
{"image_path": "xxx.jpg", "hand_bbox_list":[{"left_hand":[x,y,w,h], "right_hand":[x,y,w,h]}], "body_bbox_list":[[x,y,w,h]]}
- Note that bbox format is [minX,minY,width,height]
- For example
{"image_path": "./sample_data/images/cj_dance_01_03_1_00075.png", "body_bbox_list": [[149, 380, 242, 565]], "hand_bbox_list": [{"left_hand": [288.9151611328125, 376.70184326171875, 39.796295166015625, 51.72357177734375], "right_hand": [234.97779846191406, 363.4115295410156, 50.28489685058594, 57.89691162109375]}]}
-
--input_path webcam
: Run demo for a video file (without using--vPath
option) -
--input_path /your/path/video.mp4
: Run demo for a video file (mp4, avi, mov) -
--input_path /your/dirPath
: Run demo for a folder that contains image seqeunces -
--input_path /your/bboxDirPath
: Run demo for a folder that contains bbox json files. See bbox format -
--view_type
: The view type of input. It could bethird_view
orego_centric
--out_dir ./outputdirname
: Save the output images into files--save_pred_pkl
: Save the pose reconstruction data (SMPL parameters and vertices) into pkl files (requires--out_dir ./outputdirname
)--save_bbox_output
: Save the bbox data in json files (bbox_xywh format) (requires--out_dir ./outputdirname
)--no_display
: Do not visualize output on the screen
--use_smplx
: Use SMPLX model for body pose estimation (instead of SMPL). This uses a different pre-trainined weights and may have different performance.--start_frame 100 --end_frame 200
: Specify start and end frames (e.g., 100th frame and 200th frame in this example)--single_person
: To enforce single person mocap (to avoid outlier bboxes). This mode chooses the biggest bbox.
- CC-BY-NC 4.0. See the LICENSE file.