You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
skrcnn-benchmark-main/maskrcnn_benchmark/myconfig/e2e_faster_rcnn_fbnet.yaml"
2022-02-24 13:03:48,689 maskrcnn_benchmark INFO: Using 1 GPUs
2022-02-24 13:03:48,689 maskrcnn_benchmark INFO: Namespace(config_file='/opt/data/private/yfc/maskrcnn-benchmark-main/maskrcnn_benchmark/myconfig/e2e_faster_rcnn_fbnet.yaml', distributed=False, local_rank=0, opts=[], skip_test=False)
2022-02-24 13:03:48,690 maskrcnn_benchmark INFO: Collecting env info (might take some time)
2022-02-24 13:03:51,904 maskrcnn_benchmark INFO:
PyTorch version: 1.6.0+cu101
Is debug build: No
CUDA used to build PyTorch: 10.1
❓ Questions and Help
skrcnn-benchmark-main/maskrcnn_benchmark/myconfig/e2e_faster_rcnn_fbnet.yaml"
2022-02-24 13:03:48,689 maskrcnn_benchmark INFO: Using 1 GPUs
2022-02-24 13:03:48,689 maskrcnn_benchmark INFO: Namespace(config_file='/opt/data/private/yfc/maskrcnn-benchmark-main/maskrcnn_benchmark/myconfig/e2e_faster_rcnn_fbnet.yaml', distributed=False, local_rank=0, opts=[], skip_test=False)
2022-02-24 13:03:48,690 maskrcnn_benchmark INFO: Collecting env info (might take some time)
2022-02-24 13:03:51,904 maskrcnn_benchmark INFO:
PyTorch version: 1.6.0+cu101
Is debug build: No
CUDA used to build PyTorch: 10.1
OS: Ubuntu 16.04.6 LTS
GCC version: (Ubuntu 5.4.0-6ubuntu1~16.04.11) 5.4.0 20160609
CMake version: version 3.5.1
Python version: 3.6
Is CUDA available: Yes
CUDA runtime version: 10.1.243
GPU models and configuration: GPU 0: GeForce RTX 2080 Ti
Nvidia driver version: 430.40
cuDNN version: /usr/lib/x86_64-linux-gnu/libcudnn.so.7.5.1
Versions of relevant libraries:
[pip3] numpy==1.19.5
[pip3] torch==1.6.0+cu101
[pip3] torchvision==0.7.0+cu101
[conda] blas 1.0 mkl https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
[conda] cpuonly 1.0 0 pytorch
[conda] cuda90 1.0 h6433d27_0 pytorch
[conda] cudatoolkit 9.0 h13b8566_0
[conda] mkl 2022.0.1 h06a4308_117
[conda] numpy 1.19.5 pypi_0 pypi
[conda] torch 1.4.0 pypi_0 pypi
[conda] torchvision 0.7.0+cu101 pypi_0 pypi
Pillow (4.2.1)
2022-02-24 13:03:51,904 maskrcnn_benchmark INFO: Loaded configuration file /opt/data/private/yfc/maskrcnn-benchmark-main/maskrcnn_benchmark/myconfig/e2e_faster_rcnn_fbnet.yaml
2022-02-24 13:03:51,905 maskrcnn_benchmark INFO:
MODEL:
META_ARCHITECTURE: "GeneralizedRCNN"
BACKBONE:
CONV_BODY: FBNet
FBNET:
ARCH: "default"
BN_TYPE: "bn"
WIDTH_DIVISOR: 8
DW_CONV_SKIP_BN: True
DW_CONV_SKIP_RELU: True
RPN:
ANCHOR_SIZES: (16, 32, 64, 128, 256)
ANCHOR_STRIDE: (16, )
BATCH_SIZE_PER_IMAGE: 256
PRE_NMS_TOP_N_TRAIN: 6000
PRE_NMS_TOP_N_TEST: 6000
POST_NMS_TOP_N_TRAIN: 2000
POST_NMS_TOP_N_TEST: 100
RPN_HEAD: FBNet.rpn_head
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 512
ROI_BOX_HEAD:
POOLER_RESOLUTION: 6
FEATURE_EXTRACTOR: FBNet.roi_head
NUM_CLASSES: 2
DATASETS:
TRAIN: ("coco_2017_train", )
TEST: ("coco_2017_val",)
SOLVER:
BASE_LR: 0.06
WARMUP_FACTOR: 0.1
WEIGHT_DECAY: 0.0001
STEPS: (60000, 80000)
MAX_ITER: 90000
IMS_PER_BATCH: 128 # for 8GPUs
TEST:
IMS_PER_BATCH: 8
INPUT:
MIN_SIZE_TRAIN: (320, )
MAX_SIZE_TRAIN: 640
MIN_SIZE_TEST: 320
MAX_SIZE_TEST: 640
PIXEL_MEAN: [103.53, 116.28, 123.675]
PIXEL_STD: [57.375, 57.12, 58.395]
OUTPUT_DIR: "/opt/data/private/yfc/maskrcnn-benchmark-main/maskrcnn_benchmark/weight"
PATHS_CATALOG: "/opt/data/private/yfc/maskrcnn-benchmark-main/maskrcnn_benchmark/myconfig/paths_catalog.py"
2022-02-24 13:03:51,906 maskrcnn_benchmark INFO: Running with config:
AMP_VERBOSE: False
DATALOADER:
ASPECT_RATIO_GROUPING: True
NUM_WORKERS: 4
SIZE_DIVISIBILITY: 0
DATASETS:
TEST: ('coco_2017_val',)
TRAIN: ('coco_2017_train',)
DTYPE: float32
INPUT:
BRIGHTNESS: 0.0
CONTRAST: 0.0
HORIZONTAL_FLIP_PROB_TRAIN: 0.5
HUE: 0.0
MAX_SIZE_TEST: 640
MAX_SIZE_TRAIN: 640
MIN_SIZE_TEST: 320
MIN_SIZE_TRAIN: (320,)
PIXEL_MEAN: [103.53, 116.28, 123.675]
PIXEL_STD: [57.375, 57.12, 58.395]
SATURATION: 0.0
TO_BGR255: True
VERTICAL_FLIP_PROB_TRAIN: 0.0
MODEL:
BACKBONE:
CONV_BODY: FBNet
FREEZE_CONV_BODY_AT: 2
CLS_AGNOSTIC_BBOX_REG: False
DEVICE: cuda
FBNET:
ARCH: default
ARCH_DEF:
BN_TYPE: bn
DET_HEAD_BLOCKS: []
DET_HEAD_LAST_SCALE: 1.0
DET_HEAD_STRIDE: 0
DW_CONV_SKIP_BN: True
DW_CONV_SKIP_RELU: True
KPTS_HEAD_BLOCKS: []
KPTS_HEAD_LAST_SCALE: 0.0
KPTS_HEAD_STRIDE: 0
MASK_HEAD_BLOCKS: []
MASK_HEAD_LAST_SCALE: 0.0
MASK_HEAD_STRIDE: 0
RPN_BN_TYPE:
RPN_HEAD_BLOCKS: 0
SCALE_FACTOR: 1.0
WIDTH_DIVISOR: 8
FPN:
USE_GN: False
USE_RELU: False
GROUP_NORM:
DIM_PER_GP: -1
EPSILON: 1e-05
NUM_GROUPS: 32
KEYPOINT_ON: False
MASK_ON: False
META_ARCHITECTURE: GeneralizedRCNN
RESNETS:
BACKBONE_OUT_CHANNELS: 1024
DEFORMABLE_GROUPS: 1
NUM_GROUPS: 1
RES2_OUT_CHANNELS: 256
RES5_DILATION: 1
STAGE_WITH_DCN: (False, False, False, False)
STEM_FUNC: StemWithFixedBatchNorm
STEM_OUT_CHANNELS: 64
STRIDE_IN_1X1: True
TRANS_FUNC: BottleneckWithFixedBatchNorm
WIDTH_PER_GROUP: 64
WITH_MODULATED_DCN: False
RETINANET:
ANCHOR_SIZES: (32, 64, 128, 256, 512)
ANCHOR_STRIDES: (8, 16, 32, 64, 128)
ASPECT_RATIOS: (0.5, 1.0, 2.0)
BBOX_REG_BETA: 0.11
BBOX_REG_WEIGHT: 4.0
BG_IOU_THRESHOLD: 0.4
FG_IOU_THRESHOLD: 0.5
INFERENCE_TH: 0.05
LOSS_ALPHA: 0.25
LOSS_GAMMA: 2.0
NMS_TH: 0.4
NUM_CLASSES: 81
NUM_CONVS: 4
OCTAVE: 2.0
PRE_NMS_TOP_N: 1000
PRIOR_PROB: 0.01
SCALES_PER_OCTAVE: 3
STRADDLE_THRESH: 0
USE_C5: True
RETINANET_ON: False
ROI_BOX_HEAD:
CONV_HEAD_DIM: 256
DILATION: 1
FEATURE_EXTRACTOR: FBNet.roi_head
MLP_HEAD_DIM: 1024
NUM_CLASSES: 2
NUM_STACKED_CONVS: 4
POOLER_RESOLUTION: 6
POOLER_SAMPLING_RATIO: 0
POOLER_SCALES: (0.0625,)
PREDICTOR: FastRCNNPredictor
USE_GN: False
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 512
BBOX_REG_WEIGHTS: (10.0, 10.0, 5.0, 5.0)
BG_IOU_THRESHOLD: 0.5
DETECTIONS_PER_IMG: 100
FG_IOU_THRESHOLD: 0.5
NMS: 0.5
POSITIVE_FRACTION: 0.25
SCORE_THRESH: 0.05
USE_FPN: False
ROI_KEYPOINT_HEAD:
CONV_LAYERS: (512, 512, 512, 512, 512, 512, 512, 512)
FEATURE_EXTRACTOR: KeypointRCNNFeatureExtractor
MLP_HEAD_DIM: 1024
NUM_CLASSES: 17
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_SCALES: (0.0625,)
PREDICTOR: KeypointRCNNPredictor
RESOLUTION: 14
SHARE_BOX_FEATURE_EXTRACTOR: True
ROI_MASK_HEAD:
CONV_LAYERS: (256, 256, 256, 256)
DILATION: 1
FEATURE_EXTRACTOR: ResNet50Conv5ROIFeatureExtractor
MLP_HEAD_DIM: 1024
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_SCALES: (0.0625,)
POSTPROCESS_MASKS: False
POSTPROCESS_MASKS_THRESHOLD: 0.5
PREDICTOR: MaskRCNNC4Predictor
RESOLUTION: 14
SHARE_BOX_FEATURE_EXTRACTOR: True
USE_GN: False
RPN:
ANCHOR_SIZES: (16, 32, 64, 128, 256)
ANCHOR_STRIDE: (16,)
ASPECT_RATIOS: (0.5, 1.0, 2.0)
BATCH_SIZE_PER_IMAGE: 256
BG_IOU_THRESHOLD: 0.3
FG_IOU_THRESHOLD: 0.7
FPN_POST_NMS_PER_BATCH: True
FPN_POST_NMS_TOP_N_TEST: 2000
FPN_POST_NMS_TOP_N_TRAIN: 2000
MIN_SIZE: 0
NMS_THRESH: 0.7
POSITIVE_FRACTION: 0.5
POST_NMS_TOP_N_TEST: 100
POST_NMS_TOP_N_TRAIN: 2000
PRE_NMS_TOP_N_TEST: 6000
PRE_NMS_TOP_N_TRAIN: 6000
RPN_HEAD: FBNet.rpn_head
STRADDLE_THRESH: 0
USE_FPN: False
RPN_ONLY: False
WEIGHT:
OUTPUT_DIR: /opt/data/private/yfc/maskrcnn-benchmark-main/maskrcnn_benchmark/weight
PATHS_CATALOG: /opt/data/private/yfc/maskrcnn-benchmark-main/maskrcnn_benchmark/myconfig/paths_catalog.py
SOLVER:
BASE_LR: 0.06
BIAS_LR_FACTOR: 2
CHECKPOINT_PERIOD: 2500
GAMMA: 0.1
IMS_PER_BATCH: 128
MAX_ITER: 90000
MOMENTUM: 0.9
STEPS: (60000, 80000)
TEST_PERIOD: 0
WARMUP_FACTOR: 0.1
WARMUP_ITERS: 500
WARMUP_METHOD: linear
WEIGHT_DECAY: 0.0001
WEIGHT_DECAY_BIAS: 0
TEST:
BBOX_AUG:
ENABLED: False
H_FLIP: False
MAX_SIZE: 4000
SCALES: ()
SCALE_H_FLIP: False
DETECTIONS_PER_IMG: 100
EXPECTED_RESULTS: []
EXPECTED_RESULTS_SIGMA_TOL: 4
IMS_PER_BATCH: 8
2022-02-24 13:03:51,906 maskrcnn_benchmark INFO: Saving config into: /opt/data/private/yfc/maskrcnn-benchmark-main/maskrcnn_benchmark/weight/config.yml
2022-02-24 13:03:51,955 maskrcnn_benchmark.modeling.backbone.fbnet INFO: Building fbnet model with arch default (without scaling):
....
Segmentation fault (core dumped)
The text was updated successfully, but these errors were encountered: