-
Notifications
You must be signed in to change notification settings - Fork 348
/
train.py
217 lines (184 loc) · 7.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# the code is from on the publicly available implementation of the TD3 algorithm
# https://github.com/sfujim/TD3
import argparse
import os
import sys
import gym
import numpy as np
import torch
import TD3
import utils
# Runs policy for X episodes and returns average reward
def evaluate_policy(policy, eval_episodes=100):
avg_reward = 0.0
for _ in xrange(eval_episodes):
obs = env.reset()
done = False
while not done:
action = policy.select_action(np.array(obs))
obs, reward, done, _ = env.step(action)
avg_reward += reward
avg_reward /= eval_episodes
print("---------------------------------------")
print("Evaluation over {} episodes: {}".format(eval_episodes, avg_reward))
print("---------------------------------------")
return avg_reward
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--exp_name", type=str) # Place to store log
parser.add_argument(
"--env_name", default="LocoBotEnv-v0"
) # OpenAI gym environment name
parser.add_argument(
"--seed", default=0, type=int
) # Sets Gym, PyTorch and Numpy seeds
parser.add_argument(
"--start_timesteps", default=1e4, type=int
) # How many time steps purely random policy is run for
parser.add_argument(
"--eval_freq", default=5e3, type=float
) # How often (time steps) we evaluate
parser.add_argument(
"--max_timesteps", default=1e6, type=float
) # Max time steps to run environment for
parser.add_argument(
"--save_models", action="store_true"
) # Whether or not models are saved
parser.add_argument(
"--expl_noise", default=0.1, type=float
) # Std of Gaussian exploration noise
parser.add_argument(
"--batch_size", default=100, type=int
) # Batch size for both actor and critic
parser.add_argument("--discount", default=0.99, type=float) # Discount factor
parser.add_argument(
"--tau", default=0.005, type=float
) # Target network update rate
parser.add_argument(
"--policy_noise", default=0.2, type=float
) # Noise added to target policy during critic update
parser.add_argument(
"--noise_clip", default=0.5, type=float
) # Range to clip target policy noise
parser.add_argument(
"--policy_freq", default=2, type=int
) # Frequency of delayed policy updates
parser.add_argument(
"--check_collision", action="store_true"
) # whether to check for collision or not
parser.add_argument(
"--stop_on_hit", action="store_true"
) # if check collision is true, then whether to end episode on collision
parser.add_argument(
"--collision_reward", default=-10, type=int
) # if check_collision is true, then what reward should be added to current reward
parser.add_argument(
"--valid_goals", action="store_true"
) # while training, whether to sample valid goals or not
parser.add_argument(
"--reaching_reward", default=1, type=int
) # reward to provide on successfully reaching the goal
parser.add_argument(
"--action_reward_coeff", default=0, type=float
) # what coeff factor to apply on action norm while calculating the reward
args = parser.parse_args()
file_name = "{}_{}".format(args.env_name, str(args.seed))
root_path = "/".join(i for i in os.path.abspath(__file__).split("/")[:-1])
sys.path.insert(0, root_path)
import envs
base_path = os.path.join(root_path, "log", args.exp_name)
if not os.path.exists(os.path.join(base_path, "results")):
os.makedirs(os.path.join(base_path, "results"))
if args.save_models and not os.path.exists(
os.path.join(base_path, "pytorch_models")
):
os.makedirs(os.path.join(base_path, "pytorch_models"))
env = gym.make(args.env_name)
env._reaching_rew = args.reaching_reward
env._action_rew_coeff = args.action_reward_coeff
if args.check_collision:
env._collision_check = args.check_collision
env._collision_reward = args.collision_reward
if args.stop_on_hit:
env._stop_on_hit = True
if args.valid_goals:
env._valid_goal = True
# Set seeds
env.seed(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
# Initialize policy
policy = TD3.TD3(state_dim, action_dim, max_action)
replay_buffer = utils.ReplayBuffer()
# Evaluate untrained policy
evaluations = [evaluate_policy(policy)]
total_timesteps = 0
timesteps_since_eval = 0
episode_num = 0
done = True
while total_timesteps < args.max_timesteps:
if done:
if total_timesteps != 0:
print(
"Total T: {} Episode Num: {} Episode T: {} Reward: {}".format(
total_timesteps, episode_num, episode_timesteps, episode_reward
)
)
policy.train(
replay_buffer,
episode_timesteps,
args.batch_size,
args.discount,
args.tau,
args.policy_noise,
args.noise_clip,
args.policy_freq,
)
# Evaluate episode
if timesteps_since_eval >= args.eval_freq:
timesteps_since_eval %= args.eval_freq
evaluations.append(evaluate_policy(policy))
if args.save_models and max(evaluations) == evaluations[-1]:
policy.save(file_name, directory=base_path + "/pytorch_models")
np.save(os.path.join(base_path, "results", file_name), evaluations)
# Reset environment
obs = env.reset()
done = False
episode_reward = 0
episode_timesteps = 0
episode_num += 1
# Select action randomly or according to policy
if total_timesteps < args.start_timesteps:
action = env.action_space.sample()
else:
action = policy.select_action(np.array(obs))
if args.expl_noise != 0:
action = (
action
+ np.random.normal(
0, args.expl_noise, size=env.action_space.shape[0]
)
).clip(env.action_space.low, env.action_space.high)
# Perform action
new_obs, reward, done, _ = env.step(action)
done_bool = (
0 if episode_timesteps + 1 == env._max_episode_steps else float(done)
)
episode_reward += reward
# Store data in replay buffer
replay_buffer.add((obs, new_obs, action, reward, done_bool))
obs = new_obs
episode_timesteps += 1
total_timesteps += 1
timesteps_since_eval += 1
# Final evaluation
evaluations.append(evaluate_policy(policy))
if args.save_models and max(evaluations) == evaluations[-1]:
policy.save(file_name, directory=base_path + "/pytorch_models")
np.save(os.path.join(base_path, "results", file_name), evaluations)