Skip to content

Commit

Permalink
Updates to task allocator and window manager
Browse files Browse the repository at this point in the history
  • Loading branch information
mjducut-oe committed Oct 29, 2024
1 parent 415068c commit a49b369
Show file tree
Hide file tree
Showing 2 changed files with 61 additions and 15 deletions.
4 changes: 2 additions & 2 deletions src/factryengine/scheduler/heuristic_solver/task_allocator.py
Original file line number Diff line number Diff line change
Expand Up @@ -251,7 +251,7 @@ def _find_indexes(self, resource_intervals: np.ma.MaskedArray) -> int | None:
is_last_window_start = True # Flag to indicate the start of a window

# Iterate through the range between first and last index
for i in range(first_index, last_index + 1):
for i in range(first_index + 1, last_index + 1):
current = resource_intervals[i]
previous = resource_intervals[i - 1] if i > 0 else 0
next_value = resource_intervals[i + 1] if i < last_index else 0
Expand Down Expand Up @@ -288,7 +288,7 @@ def _find_indexes(self, resource_intervals: np.ma.MaskedArray) -> int | None:
continue

# Detect start of window using masks
if is_curr_masked and previous > 0 and next_value > 0 and not is_last_window_start:
if is_curr_masked and next_value > 0 and (previous > 0 or is_prev_masked) and not is_last_window_start:
indexes.append(i)
is_last_window_start = True
continue
Expand Down
72 changes: 59 additions & 13 deletions src/factryengine/scheduler/heuristic_solver/window_manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,25 +47,71 @@ def update_resource_windows(
"""
Removes the allocated intervals from the resource windows.
"""
for resource_id, trim_intervals in allocated_resource_windows_dict.items():
if not trim_intervals:
for resource_id, intervals_to_remove in allocated_resource_windows_dict.items():
if not intervals_to_remove:
continue

# Get the earliest start and latest end of the intervals
combined_start = trim_intervals[0][0]
combined_end = trim_intervals[-1][1]
# Get the resource's current available windows (structured array)
resource_windows = self.resource_windows_dict[resource_id]

# Create a single trim interval
combined_trim_interval = (combined_start, combined_end)
# Remove each interval individually
for interval in intervals_to_remove:
resource_windows = self._remove_interval_from_windows(resource_windows, interval)

# Get the window to trim
window = self.resource_windows_dict[resource_id]
# Update the resource windows dict
self.resource_windows_dict[resource_id] = resource_windows

# Trim the window using the combined interval
self.resource_windows_dict[resource_id] = self._trim_window(
window, combined_trim_interval
)

def _remove_interval_from_windows(
self, windows, interval_to_remove: tuple[int, int]
) -> np.ndarray:
updated_windows = []
remove_start, remove_end = interval_to_remove

for window in windows:
window_start = window['start']
window_end = window['end']

# No overlap
if remove_end <= window_start or remove_start >= window_end:
updated_windows.append(window)
continue

# Interval completely covers the window
if remove_start <= window_start and remove_end >= window_end:
continue # Entire window is removed

# Overlaps at the start
if remove_start <= window_start < remove_end < window_end:
new_window = window.copy()
new_window['start'] = remove_end
new_window['duration'] = new_window['end'] - new_window['start']
updated_windows.append(new_window)
continue

# Overlaps at the end
if window_start < remove_start < window_end <= remove_end:
new_window = window.copy()
new_window['end'] = remove_start
new_window['duration'] = new_window['end'] - new_window['start']
updated_windows.append(new_window)
continue

# Overlaps in the middle, split the window
if window_start < remove_start and window_end > remove_end:
# Create two new windows
window1 = window.copy()
window1['end'] = remove_start
window1['duration'] = window1['end'] - window1['start']

window2 = window.copy()
window2['start'] = remove_end
window2['duration'] = window2['end'] - window2['start']

updated_windows.extend([window1, window2])
continue

return np.array(updated_windows, dtype=window_dtype)


def _create_resource_windows_dict(self) -> dict[int, np.ndarray]:
Expand Down

0 comments on commit a49b369

Please sign in to comment.