-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathprintbms_screen.py
161 lines (128 loc) · 6.64 KB
/
printbms_screen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# This script reads the data from a JB BMS over RS-485 and formats
# it for use with https://github.com/BarkinSpider/SolarShed/
import time
import sys, os, io
import struct
import pyte # To install pyte in CERBO use wget and unzip. The follow the instructions for installation.
# Plain serial... Modbus would have been nice, but oh well.
import serial
sleepTime = 10
screen = pyte.Screen(80, 24)
stream = pyte.Stream(screen)
# stream.feed("Hello World!")
try:
bms = serial.Serial('/dev/ttyUSB0')
bms.baudrate = 115200
bms.timeout = 0.2
except:
print("BMS not found.")
# The hex string composing the command, including CRC check etc.
# See also:
# - https://github.com/syssi/esphome-jk-bms
# - https://github.com/NEEY-electronic/JK/tree/JK-BMS
# - https://github.com/Louisvdw/dbus-serialbattery
def sendBMSCommand(cmd_string):
cmd_bytes = bytearray.fromhex(cmd_string)
for cmd_byte in cmd_bytes:
hex_byte = ("{0:02x}".format(cmd_byte))
bms.write(bytearray.fromhex(hex_byte))
return
# This could be much better, but it works.
def readBMS(fileObj):
try:
# Read all command
sendBMSCommand('4E 57 00 13 00 00 00 00 06 03 00 00 00 00 00 00 68 00 00 01 29')
time.sleep(.1)
if bms.inWaiting() >= 4 :
if bms.read(1).hex() == '4e' : # header byte 1
if bms.read(1).hex() == '57' : # header byte 2
# next two bytes is the length of the data package, including the two length bytes
length = int.from_bytes(bms.read(2),byteorder='big')
length -= 2 # Remaining after length bytes
# Lets wait until all the data that should be there, really is present.
# If not, something went wrong. Flush and exit
available = bms.inWaiting()
if available != length :
time.sleep(0.1)
available = bms.inWaiting()
# if it's not here by now, exit
if available != length :
bms.reset_input_buffer()
raise Exception("Something went wrong reading the data...")
# Reconstruct the header and length field
b = bytearray.fromhex("4e57")
b += (length+2).to_bytes(2, byteorder='big')
# Read all the data
data = bytearray(bms.read(available))
# And re-attach the header (needed for CRC calculation)
data = b + data
# Calculate the CRC sum
crc_calc = sum(data[0:-4])
# Extract the CRC value from the data
crc_lo = struct.unpack_from('>H', data[-2:])[0]
# Exit if CRC doesn't match
if crc_calc != crc_lo :
bms.reset_input_buffer()
raise Exception("CRC Wrong")
# The actual data we need
data = data[11:length-19] # at location 0 we have 0x79
# The byte at location 1 is the length count for the cell data bytes
# Each cell has 3 bytes representing the voltage per cell in mV
bytecount = data[1]
# We can use this number to determine the total amount of cells we have
cellcount = int(bytecount/3)
min=99.0
max=0.0
# Voltages start at index 2, in groups of 3
for i in range(cellcount) :
voltage = struct.unpack_from('>xH', data, i * 3 + 2)[0]/1000
min = (voltage,min)[voltage>min]
max = (voltage,max)[voltage<max]
valName = "mode=\"cell"+str(i+1)+"_BMS\""
valName = "{" + valName + "}"
dataStr = f"JK_BMS{valName} {voltage}"
stream.feed("Cell{0}: {1} V\r\n".format(i+1,voltage))
print(dataStr, file=fileObj)
stream.feed("Min: {0} V\r\n".format(min))
stream.feed("Max: {0} V\r\n".format(max))
# Temperatures are in the next nine bytes (MOSFET, Probe 1 and Probe 2), register id + two bytes each for data
# Anything over 100 is negative, so 110 == -10
temp_fet = struct.unpack_from('>H', data, bytecount + 3)[0]
if temp_fet > 100 :
temp_fet = -(temp_fet - 100)
temp_1 = struct.unpack_from('>H', data, bytecount + 6)[0]
if temp_1 > 100 :
temp_1 = -(temp_1 - 100)
temp_2 = struct.unpack_from('>H', data, bytecount + 9)[0]
if temp_2 > 100 :
temp_2 = -(temp_2 - 100)
# For now we just show the average between the two probes in Grafana
valName = "mode=\"temp_BMS\""
valName = "{" + valName + "}"
dataStr = f"JK_BMS{valName} {(temp_1+temp_2)/2}"
stream.feed("Temperatur 1: {0} C\r\n".format(temp_1))
stream.feed("Temperatur 2: {0} C\r\n".format(temp_2))
print(dataStr, file=fileObj)
# Battery voltage
voltage = struct.unpack_from('>H', data, bytecount + 12)[0]/100
stream.feed("Battery: {0} V\r\n".format(voltage))
# Current
current = struct.unpack_from('>H', data, bytecount + 15)[0]/100
stream.feed("Current: {0} A\r\n".format(-current))
# Remaining capacity, %
capacity = struct.unpack_from('>B', data, bytecount + 18)[0]
stream.feed("Remaining capacity: {0} %\r\n".format(capacity))
print
bms.reset_input_buffer()
except Exception as e :
print(e)
while True:
file_object = open('JK_BMS.prom.tmp', mode='w')
readBMS(file_object)
print(pyte.control.ESC + pyte.escape.RIS)
for idx, line in enumerate(screen.display, 1):
print("{0:2d} {1} ¶".format(idx, line))
file_object.flush()
file_object.close()
outLine = os.system('/bin/mv JK_BMS.prom.tmp JK_BMS.prom')
time.sleep(sleepTime)