-
Notifications
You must be signed in to change notification settings - Fork 166
/
Copy pathsymfeatures.cc
218 lines (164 loc) · 5.16 KB
/
symfeatures.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*Copyright 2014 Francisco Alvaro
This file is part of SESHAT.
SESHAT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
SESHAT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with SESHAT. If not, see <http://www.gnu.org/licenses/>.
*/
#include "symfeatures.h"
SymFeatures::SymFeatures(char *mav_on, char *mav_off) {
//Load means and stds normalization
FILE *fd = fopen(mav_on, "r");
if( !fd ) {
fprintf(stderr, "Error loading online mav file: %s\n", mav_on);
exit(-1);
}
//Read values online
for(int i=0; i<ON_FEAT; i++)
fscanf(fd, "%lf", &means_on[i]);
for(int i=0; i<ON_FEAT; i++)
fscanf(fd, "%lf", &stds_on[i]);
fclose(fd);
fd = fopen(mav_off, "r");
if( !fd ) {
fprintf(stderr, "Error loading offline mav file: %s\n", mav_off);
exit(-1);
}
//Read values offline
for(int i=0; i<OFF_FEAT; i++)
fscanf(fd, "%lf", &means_off[i]);
for(int i=0; i<OFF_FEAT; i++)
fscanf(fd, "%lf", &stds_off[i]);
fclose(fd);
}
SymFeatures::~SymFeatures() {
}
DataSequence *SymFeatures::getOnline(Sample *M, SegmentHyp *SegHyp) {
//Create and fill sequence of points
sentence *sent=new sentence( SegHyp->stks.size() );
for(list<int>::iterator it=SegHyp->stks.begin(); it!=SegHyp->stks.end(); it++) {
stroke st(M->getStroke(*it)->getNpuntos(), 1); //means is pendown stroke
for(int j=0; j<M->getStroke(*it)->getNpuntos(); j++) {
Punto *p = M->getStroke(*it)->get(j);
Point q(p->x, p->y);
st.points.push_back( q );
}
sent->strokes.push_back(st);
}
// Remove repeated points
sentence *no_rep = sent->anula_rep_points();
// Median filter
sentence * traz_suav=no_rep->suaviza_traza();
//Compute online features
sentenceF feat;
feat.calculate_features(*traz_suav);
//Create DataSequence
//Set sequence shape
int nvec = feat.n_frames;
//Check number of online features
if( feat.frames[0].get_fr_dim() != ON_FEAT ) {
fprintf(stderr, "Error: unexpected number of online features\n");
exit(-1);
}
//Create sequence
DataSequence *seq = new DataSequence(ON_FEAT);
vector<size_t> shape(1);
shape[0] = nvec;
//Create aux SeqBuffer to fill data
SeqBuffer<real_t> *auxBuf = new SeqBuffer<real_t>(shape, ON_FEAT);
//Save the input vectors following the SeqBuffer data representation
for(int i=0; i<nvec; i++) {
for(int j=0; j<ON_FEAT; j++) {
double val = feat.frames[i].getFea(j);
//Normalize to normal(0,1)
val = (val - means_on[j])/stds_on[j];
auxBuf->data[i*ON_FEAT + j] = val;
}
}
//Assign the loaded data
seq->inputs = *auxBuf;
delete auxBuf;
//Create target vector (content doesn't matter, just because it's required)
vector<int> target(nvec);
shape[0] = nvec;
seq->targetClasses.data = target;
seq->targetClasses.shape = shape;
seq->tag = "none";
//Free memory
delete sent;
delete no_rep;
delete traz_suav;
//Return extracted features for the sequence of strokes
return seq;
}
DataSequence *SymFeatures::getOfflineFKI(int **img, int H, int W) {
//Create sequence
DataSequence *seq = new DataSequence(OFF_FEAT);
//Set sequence shape
int nvec = W;
vector<size_t> shape(1);
shape[0] = nvec;
//Create aux SeqBuffer to fill data
SeqBuffer<real_t> *auxBuf = new SeqBuffer<real_t>(shape, OFF_FEAT);
//Compute FKI offline features
double c[OFF_FEAT+1];
double c4ant=H+1, c5ant=0;
//For every column
for(int x=0; x<W; x++) {
//Compute the FKI 9 features
for(int i=0; i<OFF_FEAT; i++)
c[i] = 0;
c[4]=H+1;
for(int y=1; y<=H; y++) {
if( img[y-1][x] ) { //Black pixel
c[1] += 1;
c[2] += y;
c[3] += y*y;
if( y<c[4] ) c[4]=y;
if( y>c[5] ) c[5]=y;
}
if( y>1 && img[y-1][x] != img[y-2][x] ) c[8]++;
}
c[2] /= H;
c[3] /= H*H;
for(int y=c[4]+1; y<c[5]; y++)
if( img[y-1][x] ) //Black pixel
c[9]++;
c[6]=H+1; c[7]=0;
if( x+1 < W ) {
for(int y=1; y<=H; y++) {
if( img[y-1][x+1] ) { //Black pixel
if( y<c[6] ) c[6]=y;
if( y>c[7] ) c[7]=y;
}
}
}
c[6] = (c[6] - c4ant)/2;
c[7] = (c[7] - c5ant)/2;
c4ant = c[4];
c5ant = c[5];
//Save the input vectors following the SeqBuffer data representation
for(int j=0; j<OFF_FEAT; j++) {
//Normalize to normal(0,1)
c[j+1] = (c[j+1] - means_off[j])/stds_off[j];
auxBuf->data[x*OFF_FEAT + j] = c[j+1];
}
}
//Assign the loaded data
seq->inputs = *auxBuf;
delete auxBuf;
//Create target vector (content doesn't matter, just because it's required)
vector<int> target(nvec);
shape[0] = nvec;
seq->targetClasses.data = target;
seq->targetClasses.shape = shape;
seq->tag = "none";
//Return extracted features for the sequence of strokes
return seq;
}