-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathraptor.py
233 lines (187 loc) · 8.79 KB
/
raptor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import numpy as np
import pandas as pd
from typing import List, Dict, Any
from langchain.chains.llm import LLMChain
from sklearn.mixture import GaussianMixture
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain.schema import AIMessage
from langchain.docstore.document import Document
import matplotlib.pyplot as plt
import logging
import os
import sys
from dotenv import load_dotenv
sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '..'))) # Add the parent directory to the path
from helper_functions import *
from evaluation.evalute_rag import *
# Load environment variables from a .env file
load_dotenv()
# Set the OpenAI API key environment variable
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
# Helper functions
def extract_text(item):
"""Extract text content from either a string or an AIMessage object."""
if isinstance(item, AIMessage):
return item.content
return item
def embed_texts(texts: List[str]) -> List[List[float]]:
"""Embed texts using OpenAIEmbeddings."""
embeddings = OpenAIEmbeddings()
logging.info(f"Embedding {len(texts)} texts")
return embeddings.embed_documents([extract_text(text) for text in texts])
def perform_clustering(embeddings: np.ndarray, n_clusters: int = 10) -> np.ndarray:
"""Perform clustering on embeddings using Gaussian Mixture Model."""
logging.info(f"Performing clustering with {n_clusters} clusters")
gm = GaussianMixture(n_components=n_clusters, random_state=42)
return gm.fit_predict(embeddings)
def summarize_texts(texts: List[str], llm: ChatOpenAI) -> str:
"""Summarize a list of texts using OpenAI."""
logging.info(f"Summarizing {len(texts)} texts")
prompt = ChatPromptTemplate.from_template(
"Summarize the following text concisely:\n\n{text}"
)
chain = prompt | llm
input_data = {"text": texts}
return chain.invoke(input_data)
def visualize_clusters(embeddings: np.ndarray, labels: np.ndarray, level: int):
"""Visualize clusters using PCA."""
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
reduced_embeddings = pca.fit_transform(embeddings)
plt.figure(figsize=(10, 8))
scatter = plt.scatter(reduced_embeddings[:, 0], reduced_embeddings[:, 1], c=labels, cmap='viridis')
plt.colorbar(scatter)
plt.title(f'Cluster Visualization - Level {level}')
plt.xlabel('First Principal Component')
plt.ylabel('Second Principal Component')
plt.show()
def build_vectorstore(tree_results: Dict[int, pd.DataFrame], embeddings) -> FAISS:
"""Build a FAISS vectorstore from all texts in the RAPTOR tree."""
all_texts = []
all_embeddings = []
all_metadatas = []
for level, df in tree_results.items():
all_texts.extend([str(text) for text in df['text'].tolist()])
all_embeddings.extend([embedding.tolist() if isinstance(embedding, np.ndarray) else embedding for embedding in
df['embedding'].tolist()])
all_metadatas.extend(df['metadata'].tolist())
logging.info(f"Building vectorstore with {len(all_texts)} texts")
documents = [Document(page_content=str(text), metadata=metadata)
for text, metadata in zip(all_texts, all_metadatas)]
return FAISS.from_documents(documents, embeddings)
def create_retriever(vectorstore: FAISS, llm: ChatOpenAI) -> ContextualCompressionRetriever:
"""Create a retriever with contextual compression."""
logging.info("Creating contextual compression retriever")
base_retriever = vectorstore.as_retriever()
prompt = ChatPromptTemplate.from_template(
"Given the following context and question, extract only the relevant information for answering the question:\n\n"
"Context: {context}\n"
"Question: {question}\n\n"
"Relevant Information:"
)
extractor = LLMChainExtractor.from_llm(llm, prompt=prompt)
return ContextualCompressionRetriever(
base_compressor=extractor,
base_retriever=base_retriever
)
# Main class RAPTORMethod
class RAPTORMethod:
def __init__(self, texts: List[str], max_levels: int = 3):
self.texts = texts
self.max_levels = max_levels
self.embeddings = OpenAIEmbeddings()
self.llm = ChatOpenAI(model_name="gpt-4o-mini")
self.tree_results = self.build_raptor_tree()
def build_raptor_tree(self) -> Dict[int, pd.DataFrame]:
"""Build the RAPTOR tree structure with level metadata and parent-child relationships."""
results = {}
current_texts = [extract_text(text) for text in self.texts]
current_metadata = [{"level": 0, "origin": "original", "parent_id": None} for _ in self.texts]
for level in range(1, self.max_levels + 1):
logging.info(f"Processing level {level}")
embeddings = embed_texts(current_texts)
n_clusters = min(10, len(current_texts) // 2)
cluster_labels = perform_clustering(np.array(embeddings), n_clusters)
df = pd.DataFrame({
'text': current_texts,
'embedding': embeddings,
'cluster': cluster_labels,
'metadata': current_metadata
})
results[level - 1] = df
summaries = []
new_metadata = []
for cluster in df['cluster'].unique():
cluster_docs = df[df['cluster'] == cluster]
cluster_texts = cluster_docs['text'].tolist()
cluster_metadata = cluster_docs['metadata'].tolist()
summary = summarize_texts(cluster_texts, self.llm)
summaries.append(summary)
new_metadata.append({
"level": level,
"origin": f"summary_of_cluster_{cluster}_level_{level - 1}",
"child_ids": [meta.get('id') for meta in cluster_metadata],
"id": f"summary_{level}_{cluster}"
})
current_texts = summaries
current_metadata = new_metadata
if len(current_texts) <= 1:
results[level] = pd.DataFrame({
'text': current_texts,
'embedding': embed_texts(current_texts),
'cluster': [0],
'metadata': current_metadata
})
logging.info(f"Stopping at level {level} as we have only one summary")
break
return results
def run(self, query: str, k: int = 3) -> Dict[str, Any]:
"""Run the RAPTOR query pipeline."""
vectorstore = build_vectorstore(self.tree_results, self.embeddings)
retriever = create_retriever(vectorstore, self.llm)
logging.info(f"Processing query: {query}")
relevant_docs = retriever.get_relevant_documents(query)
doc_details = [{"content": doc.page_content, "metadata": doc.metadata} for doc in relevant_docs]
context = "\n\n".join([doc.page_content for doc in relevant_docs])
prompt = ChatPromptTemplate.from_template(
"Given the following context, please answer the question:\n\n"
"Context: {context}\n\n"
"Question: {question}\n\n"
"Answer:"
)
chain = LLMChain(llm=self.llm, prompt=prompt)
answer = chain.run(context=context, question=query)
return {
"query": query,
"retrieved_documents": doc_details,
"context_used": context,
"answer": answer,
"model_used": self.llm.model_name,
}
# Argument Parsing and Validation
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="Run RAPTORMethod")
parser.add_argument("--path", type=str, default="../data/Understanding_Climate_Change.pdf",
help="Path to the PDF file to process.")
parser.add_argument("--query", type=str, default="What is the greenhouse effect?",
help="Query to test the retriever (default: 'What is the main topic of the document?').")
parser.add_argument('--max_levels', type=int, default=3, help="Max levels for RAPTOR tree")
return parser.parse_args()
# Main Execution
if __name__ == "__main__":
args = parse_args()
loader = PyPDFLoader(args.path)
documents = loader.load()
texts = [doc.page_content for doc in documents]
raptor_method = RAPTORMethod(texts, max_levels=args.max_levels)
result = raptor_method.run(args.query)
print(f"Query: {result['query']}")
print(f"Context Used: {result['context_used']}")
print(f"Answer: {result['answer']}")
print(f"Model Used: {result['model_used']}")