-
Notifications
You must be signed in to change notification settings - Fork 48
/
fsod_train_net.py
executable file
·119 lines (97 loc) · 3.32 KB
/
fsod_train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
TridentNet Training Script.
This script is a simplified version of the training script in detectron2/tools.
"""
import os
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
#from detectron2.evaluation import COCOEvaluator
#from detectron2.data import build_detection_train_loader
from detectron2.data import build_batch_data_loader
from fewx.config import get_cfg
from fewx.data.dataset_mapper import DatasetMapperWithSupport
from fewx.data.build import build_detection_train_loader, build_detection_test_loader
from fewx.solver import build_optimizer
from fewx.evaluation import COCOEvaluator
import bisect
import copy
import itertools
import logging
import numpy as np
import operator
import pickle
import torch.utils.data
import detectron2.utils.comm as comm
from detectron2.utils.logger import setup_logger
class Trainer(DefaultTrainer):
@classmethod
def build_train_loader(cls, cfg):
"""
Returns:
iterable
It calls :func:`detectron2.data.build_detection_train_loader` with a customized
DatasetMapper, which adds categorical labels as a semantic mask.
"""
mapper = DatasetMapperWithSupport(cfg)
return build_detection_train_loader(cfg, mapper)
@classmethod
def build_test_loader(cls, cfg, dataset_name):
"""
Returns:
iterable
It now calls :func:`detectron2.data.build_detection_test_loader`.
Overwrite it if you'd like a different data loader.
"""
return build_detection_test_loader(cfg, dataset_name)
@classmethod
def build_optimizer(cls, cfg, model):
"""
Returns:
torch.optim.Optimizer:
It now calls :func:`detectron2.solver.build_optimizer`.
Overwrite it if you'd like a different optimizer.
"""
return build_optimizer(cfg, model)
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
return COCOEvaluator(dataset_name, cfg, True, output_folder)
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
rank = comm.get_rank()
setup_logger(cfg.OUTPUT_DIR, distributed_rank=rank, name="fewx")
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)