-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLibraryTest.py
355 lines (349 loc) · 17.7 KB
/
LibraryTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from BirthdayProblem import BirthdayProblem
from decimal import Decimal, ROUND_CEILING
def testFn(args):
if "p" in args:
(res, method) = BirthdayProblem.Solver.solveForN(Decimal(args["dOrDLog"]), Decimal(args["p"]), args["isBinary"], args["isCombinations"], args["method"])
return (res.quantize(Decimal('0.0000000001')) if(args["isBinary"] is True) else res.to_integral_value(ROUND_CEILING), method)
else:
(res, method) = BirthdayProblem.Solver.solveForP(Decimal(args["dOrDLog"]), Decimal(args["nOrNLog"]), args["isBinary"], args["isCombinations"], args["method"])
return (res.quantize(Decimal('0.000000000001')), method)
assemblerFn = lambda inp: inp
dividerFn = lambda inp: [inp]
# Add input numbers as strings since floating point imprecision in input to Decimal will otherwise affect the output
testData = [
[
{ "dOrDLog": "1", "p": "1.0", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("2"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "p": "1.0", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("2"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "p": "0.0", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("1"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "p": "0.0", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("1"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("2"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("2"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1000000000", "p": "0.0000001", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("15"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "1", "nOrNLog": "1", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("0"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "nOrNLog": "1", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("0"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "nOrNLog": "1", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("0"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "nOrNLog": "0", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("0"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "nOrNLog": "0", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("0"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "nOrNLog": "0", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("0"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "nOrNLog": "2", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("1"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "nOrNLog": "2", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("1"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "1", "nOrNLog": "2", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("1"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "69", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("11"), BirthdayProblem.Solver.CalcPrecision.EXACT)
],
[
{ "dOrDLog": "69", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("10"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "83", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("12"), BirthdayProblem.Solver.CalcPrecision.EXACT)
],
[
{ "dOrDLog": "83", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("11"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "1000000000", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("37234"), BirthdayProblem.Solver.CalcPrecision.EXACT)
],
[
{ "dOrDLog": "1000000000", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("37233"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "366", "nOrNLog": "23", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("0.506323011819"), BirthdayProblem.Solver.CalcPrecision.EXACT)
],
[
{ "dOrDLog": "366", "nOrNLog": "23", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("0.506315474495"), BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX)
],
[
{ "dOrDLog": "366", "nOrNLog": "23", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("0.514549326419"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "366", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("23"), BirthdayProblem.Solver.CalcPrecision.EXACT)
],
[
{ "dOrDLog": "366", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("23"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "6274264876827642864872634872364782634", "nOrNLog": "2376287346287353638", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("0.362366927782"), BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX)
],
[
{ "dOrDLog": "6274264876827642864872634872364782634", "nOrNLog": "2376287346287353638", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("0.362366927782"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "128", "nOrNLog": "0", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": False, "isBinary": True },
True,
(Decimal("0"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "128", "nOrNLog": "0", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": True },
True,
(Decimal("0"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "128", "nOrNLog": "129", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": False, "isBinary": True },
True,
(Decimal("1"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "128", "nOrNLog": "129", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": True },
True,
(Decimal("1"), BirthdayProblem.Solver.CalcPrecision.TRIVIAL)
],
[
{ "dOrDLog": "128", "nOrNLog": "64", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": False, "isBinary": True },
True,
(Decimal("0.393469340287"), BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX)
],
[
{ "dOrDLog": "128", "nOrNLog": "64", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": True },
True,
(Decimal("0.393469340287"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "128", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": True },
True,
(Decimal("64.2356168135"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "2000000", "nOrNLog": "1000000", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": False, "isBinary": True },
False,
'needed precision for method exceeds maximum precision'
],
[
{ "dOrDLog": "2000000", "nOrNLog": "1000000", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": True },
True,
(Decimal("0.393469340287"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "2000000", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": True },
True,
(Decimal("1000000.2356168135"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "8", "nOrNLog": "3", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": True },
True,
(Decimal("0.104576930892"), BirthdayProblem.Solver.CalcPrecision.EXACT)
],
[
{ "dOrDLog": "8", "nOrNLog": "3", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": False, "isBinary": True },
True,
(Decimal("0.104567528314"), BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX)
],
[
{ "dOrDLog": "8", "nOrNLog": "3", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": True },
True,
(Decimal("0.117503097415"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "256", "nOrNLog": "8", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("0.104576930892"), BirthdayProblem.Solver.CalcPrecision.EXACT)
],
[
{ "dOrDLog": "256", "nOrNLog": "8", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("0.104567528314"), BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX)
],
[
{ "dOrDLog": "256", "nOrNLog": "8", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("0.117503097415"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "52", "p": "0.1", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": True, "isBinary": False },
True,
(Decimal("4122665867622533660736208120290868"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "52", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": True, "isBinary": False },
True,
(Decimal("10574307231100289363611308602026252"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "52", "nOrNLog": "10000000000000000000", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": True, "isBinary": False },
True,
(Decimal("0"), BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX)
],
[
{ "dOrDLog": "52", "nOrNLog": "10000000000000000000", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": True, "isBinary": False },
True,
(Decimal("0"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "52", "nOrNLog": "10000000000000000000000000000000000", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": True, "isBinary": False },
True,
(Decimal("0.462001746672"), BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX)
],
[
{ "dOrDLog": "52", "nOrNLog": "10000000000000000000000000000000000", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": True, "isBinary": False },
True,
(Decimal("0.462001746672"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "4", "nOrNLog": "18", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": True, "isBinary": True },
True,
(Decimal("0.001640861961"), BirthdayProblem.Solver.CalcPrecision.EXACT)
],
[
{ "dOrDLog": "4", "nOrNLog": "18", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": True, "isBinary": True },
True,
(Decimal("0.001640861961"), BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX)
],
[
{ "dOrDLog": "4", "nOrNLog": "18", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": True, "isBinary": True },
True,
(Decimal("0.001640868208"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "16", "nOrNLog": "262144", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": True, "isBinary": False },
True,
(Decimal("0.001640861961"), BirthdayProblem.Solver.CalcPrecision.EXACT)
],
[
{ "dOrDLog": "16", "nOrNLog": "262144", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": True, "isBinary": False },
True,
(Decimal("0.001640861961"), BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX)
],
[
{ "dOrDLog": "16", "nOrNLog": "262144", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": True, "isBinary": False },
True,
(Decimal("0.001640868208"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "20922789888000", "nOrNLog": "262144", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": False, "isBinary": False },
True,
(Decimal("0.001640861961"), BirthdayProblem.Solver.CalcPrecision.EXACT)
],
[
{ "dOrDLog": "20922789888000", "nOrNLog": "262144", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("0.001640861961"), BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX)
],
[
{ "dOrDLog": "20922789888000", "nOrNLog": "262144", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": False, "isBinary": False },
True,
(Decimal("0.001640868208"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "128", "nOrNLog": "64", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": True, "isBinary": True },
False,
'd exceeds maximum size and is needed for method'
],
[
{ "dOrDLog": "128", "nOrNLog": "64", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": True, "isBinary": True },
True,
(Decimal("0"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "1280", "nOrNLog": "640", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": True, "isBinary": True },
False,
'd exceeds maximum size and is needed for method'
],
[
{ "dOrDLog": "1280", "nOrNLog": "640", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": True, "isBinary": True },
True,
(Decimal("0"), BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX)
],
[
{ "dOrDLog": "1280", "p": "0.5", "method": BirthdayProblem.Solver.CalcPrecision.EXACT, "isCombinations": True, "isBinary": True },
False,
"d exceeds maximum size and is needed for method"
],
[
{ "dOrDLog": "12800", "nOrNLog": "6400", "method": BirthdayProblem.Solver.CalcPrecision.STIRLING_APPROX, "isCombinations": True, "isBinary": True },
False,
"d exceeds maximum size and is needed for method"
],
[
{ "dOrDLog": "12800", "nOrNLog": "6400", "method": BirthdayProblem.Solver.CalcPrecision.TAYLOR_APPROX, "isCombinations": True, "isBinary": True },
False,
"needed precision for method exceeds maximum precision"
]
]