-
Notifications
You must be signed in to change notification settings - Fork 6
/
dsprites.sh
13 lines (12 loc) · 2.3 KB
/
dsprites.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
# Supervised
python main.py --multirun rng.seed=range(20) experiment_name=dsprites_supervised data=dsprites/image model=pytorch_conv_net_burgess_mcdo trainer=pytorch_neural_net_classif_mcdo trainer.n_optim_steps_min=5_000 acquisition.method=random
python main.py --multirun rng.seed=range(20) experiment_name=dsprites_supervised data=dsprites/image model=pytorch_conv_net_burgess_mcdo trainer=pytorch_neural_net_classif_mcdo trainer.n_optim_steps_min=5_000 acquisition.method=bald
python main.py --multirun rng.seed=range(20) experiment_name=dsprites_supervised data=dsprites/image model=pytorch_conv_net_burgess_mcdo trainer=pytorch_neural_net_classif_mcdo trainer.n_optim_steps_min=5_000 acquisition.method=epig
# Semi-supervised
python main.py --multirun rng.seed=range(20) experiment_name=dsprites_semi data=dsprites/embedding model=sklearn_random_forest_classif trainer=sklearn_random_forest_classif acquisition.method=random
python main.py --multirun rng.seed=range(20) experiment_name=dsprites_semi data=dsprites/embedding model=sklearn_random_forest_classif trainer=sklearn_random_forest_classif acquisition.method=bald
python main.py --multirun rng.seed=range(20) experiment_name=dsprites_semi data=dsprites/embedding model=sklearn_random_forest_classif trainer=sklearn_random_forest_classif acquisition.method=epig
python main.py --multirun rng.seed=range(20) experiment_name=dsprites_semi data=dsprites/embedding model=sklearn_random_forest_classif trainer=sklearn_random_forest_classif acquisition.method=greedy_k_centers acquisition.batch_size=10
python main.py --multirun rng.seed=range(20) experiment_name=dsprites_semi data=dsprites/embedding model=sklearn_random_forest_classif trainer=sklearn_random_forest_classif acquisition.method=k_means acquisition.batch_size=10
python main.py --multirun rng.seed=range(20) experiment_name=dsprites_semi data=dsprites/embedding model=sklearn_random_forest_classif trainer=sklearn_random_forest_classif acquisition.method=probcover acquisition.batch_size=10
python main.py --multirun rng.seed=range(20) experiment_name=dsprites_semi data=dsprites/embedding model=sklearn_random_forest_classif trainer=sklearn_random_forest_classif acquisition.method=typiclust acquisition.batch_size=10