forked from huevosabio/cs341
-
Notifications
You must be signed in to change notification settings - Fork 0
/
causal_impact.py
193 lines (168 loc) · 7.6 KB
/
causal_impact.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# taken from https://github.com/tcassou/causal_impact/blob/master/causal_impact.py
from __future__ import print_function
import matplotlib.pyplot as plt
import numpy as np
from statsmodels.tsa.statespace.structural import UnobservedComponents
DEFAULT_ARGS = {
'max_iter': 1000,
'n_seasons': 7,
}
class CausalImpact:
"""
Causal inference through counterfactual predictions using a Bayesian structural time-series model.
"""
def __init__(self, data, inter_date, model_args=None):
"""Main constructor.
:param pandas.DataFrame data: input data. Must contain at least 2 columns, one being named 'y'.
See the README for more details.
:param object inter_date: date of intervention. Must be of same type of the data index elements.
This should usually be int of datetime.date
:param {str: object} model_args: parameters of the model
> max_iter: number of samples in the MCMC sampling
> n_seasons: number of seasons in the seasonal component of the BSTS model
"""
self.data = None # Input data, with a reset index
self.data_index = None # Data initial index
self.data_inter = None # Data intervention date, relative to the reset index
self.model = None # statsmodels BSTS model
self.fit = None # statsmodels BSTS fitted model
self.model_args = None # BSTS model arguments
# Checking input arguments
self._check_input(data, inter_date)
self._check_model_args(model_args)
def run(self):
"""Fit the BSTS model to the data.
"""
self.model = UnobservedComponents(
self.data.loc[:self.data_inter - 1, self._obs_col()].values,
exog=self.data.loc[:self.data_inter - 1, self._reg_cols()].values,
level='local linear trend',
seasonal=self.model_args['n_seasons'],
)
self.fit = self.model.fit(
maxiter=self.model_args['max_iter'],
)
def _check_input(self, data, inter_date):
"""Check input data.
:param pandas.DataFrame data: input data. Must contain at least 2 columns, one being named 'y'.
See the README for more details.
:param object inter_date: date of intervention. Must be of same type of the data index elements.
This should usually be int of datetime.date
"""
self.data_index = data.index
self.data = data.reset_index(drop=True)
try:
self.data_inter = self.data_index.tolist().index(inter_date)
except ValueError:
raise ValueError('Input intervention date could not be found in data index.')
def _check_model_args(self, model_args):
"""Check input arguments, and add missing ones if needed.
:return: the valid dict of arguments
:rtype: {str: object}
"""
if model_args is None:
model_args = {}
for key, val in DEFAULT_ARGS.iteritems():
if key not in model_args:
model_args[key] = val
self.model_args = model_args
def _obs_col(self):
"""Get name of column to be modeled in input data.
:return: column name
:rtype: str
"""
return 'y'
def _reg_cols(self):
"""Get names of columns used in the regression component of the model.
:return: the column names
:rtype: pandas.indexes.base.Index
"""
return self.data.columns.difference([self._obs_col()])
def plot_components(self):
"""Plot the estimated components of the model.
"""
self.fit.plot_components(figsize=(15, 9), legend_loc='lower right')
plt.show()
def plot(self):
"""Produce final impact plots.
"""
min_t = 2 if self.model_args['n_seasons'] is None else self.model_args['n_seasons'] + 1
# Data model before date of intervention - allows to evaluate quality of fit
pred = self.fit.get_prediction()
pre_model = pred.predicted_mean
pre_lower = pred.conf_int()['lower y'].values
pre_upper = pred.conf_int()['upper y'].values
pre_model[:min_t] = np.nan
pre_lower[:min_t] = np.nan
pre_upper[:min_t] = np.nan
# Best prediction of y without any intervention
post_pred = self.fit.get_forecast(
steps=self.data.shape[0] - self.data_inter,
exog=self.data.loc[self.data_inter:, self._reg_cols()]
)
post_model = post_pred.predicted_mean
post_lower = post_pred.conf_int()['lower y'].values
post_upper = post_pred.conf_int()['upper y'].values
plt.figure(figsize=(15, 12))
# Observation and regression components
ax1 = plt.subplot(3, 1, 1)
for col in self._reg_cols():
plt.plot(self.data[col], label=col)
plt.plot(np.concatenate([pre_model, post_model]), 'r--', linewidth=2, label='model')
plt.plot(self.data[self._obs_col()], 'k', linewidth=2, label=self._obs_col())
plt.axvline(self.data_inter, c='k', linestyle='--')
plt.fill_between(
self.data.loc[:self.data_inter - 1].index,
pre_lower,
pre_upper,
facecolor='gray', interpolate=True, alpha=0.25,
)
plt.fill_between(
self.data.loc[self.data_inter:].index,
post_lower,
post_upper,
facecolor='gray', interpolate=True, alpha=0.25,
)
plt.setp(ax1.get_xticklabels(), visible=False)
plt.legend(loc='upper left')
plt.title('Observation vs prediction')
# Pointwise difference
ax2 = plt.subplot(312, sharex=ax1)
plt.plot(self.data[self._obs_col()] - np.concatenate([pre_model, post_model]), 'r--', linewidth=2)
plt.plot(self.data.index, np.zeros(self.data.shape[0]), 'g-', linewidth=2)
plt.axvline(self.data_inter, c='k', linestyle='--')
plt.fill_between(
self.data.loc[:self.data_inter - 1].index,
self.data.loc[:self.data_inter - 1, self._obs_col()] - pre_lower,
self.data.loc[:self.data_inter - 1, self._obs_col()] - pre_upper,
facecolor='gray', interpolate=True, alpha=0.25,
)
plt.fill_between(
self.data.loc[self.data_inter:].index,
self.data.loc[self.data_inter:, self._obs_col()] - post_lower,
self.data.loc[self.data_inter:, self._obs_col()] - post_upper,
facecolor='gray', interpolate=True, alpha=0.25,
)
plt.setp(ax2.get_xticklabels(), visible=False)
plt.title('Difference')
# Cumulative impact
ax3 = plt.subplot(313, sharex=ax1)
plt.plot(
self.data.loc[self.data_inter:].index,
(self.data.loc[self.data_inter:, self._obs_col()] - post_model).cumsum(),
'r--', linewidth=2,
)
plt.plot(self.data.index, np.zeros(self.data.shape[0]), 'g-', linewidth=2)
plt.axvline(self.data_inter, c='k', linestyle='--')
plt.fill_between(
self.data.loc[self.data_inter:].index,
(self.data.loc[self.data_inter:, self._obs_col()] - post_lower).cumsum(),
(self.data.loc[self.data_inter:, self._obs_col()] - post_upper).cumsum(),
facecolor='gray', interpolate=True, alpha=0.25,
)
plt.axis([self.data.index[0], self.data.index[-1], None, None])
ax3.set_xticklabels(self.data_index)
plt.title('Cumulative Impact')
plt.xlabel('$T$')
plt.show()
print('Note: the first {} observations are not shown, due to approximate diffuse initialization'.format(min_t))