diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index dc815cf..9c29094 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -8,7 +8,7 @@ jobs: - name: Check out uses: actions/checkout@v2 - name: Build and Deploy Nikola - working-directory: ./site uses: getnikola/nikola-action@v4 with: dry_run: false + working-directory: ./site diff --git a/notebooks/05_the_many_variables_and_the_spurious_waffles.ipynb b/notebooks/05_the_many_variables_and_the_spurious_waffles.ipynb index b5bb538..efbcb50 100644 --- a/notebooks/05_the_many_variables_and_the_spurious_waffles.ipynb +++ b/notebooks/05_the_many_variables_and_the_spurious_waffles.ipynb @@ -192,6 +192,7 @@ "# compute percentile interval of mean\n", "A_seq = jnp.linspace(start=-3, stop=3.2, num=30)\n", "post = m5_1.sample_posterior(random.PRNGKey(1), p5_1, sample_shape=(1000,))\n", + "post.pop(\"mu\")\n", "post_pred = Predictive(m5_1.model, post)(random.PRNGKey(2), A=A_seq)\n", "mu = post_pred[\"mu\"]\n", "mu_mean = jnp.mean(mu, 0)\n", @@ -551,6 +552,7 @@ "outputs": [], "source": [ "post = m5_4.sample_posterior(random.PRNGKey(1), p5_4, sample_shape=(1000,))\n", + "post.pop(\"mu\")\n", "post_pred = Predictive(m5_4.model, post)(random.PRNGKey(2), A=d.A.values)\n", "mu = post_pred[\"mu\"]\n", "mu_mean = jnp.mean(mu, 0)\n", @@ -573,6 +575,7 @@ "# call predictive without specifying new data\n", "# so it uses original data\n", "post = m5_3.sample_posterior(random.PRNGKey(1), p5_3, (int(1e4),))\n", + "post.pop(\"mu\")\n", "post_pred = Predictive(m5_3.model, post)(random.PRNGKey(2), M=d.M.values, A=d.A.values)\n", "mu = post_pred[\"mu\"]\n", "\n", @@ -1394,6 +1397,7 @@ "source": [ "xseq = jnp.linspace(start=dcc.N.min() - 0.15, stop=dcc.N.max() + 0.15, num=30)\n", "post = m5_5.sample_posterior(random.PRNGKey(1), p5_5, sample_shape=(1000,))\n", + "post.pop(\"mu\")\n", "post_pred = Predictive(m5_5.model, post)(random.PRNGKey(2), N=xseq)\n", "mu = post_pred[\"mu\"]\n", "mu_mean = jnp.mean(mu, 0)\n", @@ -1610,6 +1614,7 @@ "source": [ "xseq = jnp.linspace(start=dcc.N.min() - 0.15, stop=dcc.N.max() + 0.15, num=30)\n", "post = m5_7.sample_posterior(random.PRNGKey(1), p5_7, sample_shape=(1000,))\n", + "post.pop(\"mu\")\n", "post_pred = Predictive(m5_7.model, post)(random.PRNGKey(2), M=0, N=xseq)\n", "mu = post_pred[\"mu\"]\n", "mu_mean = jnp.mean(mu, 0)\n",