-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.par
242 lines (202 loc) · 7.56 KB
/
models.par
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
* Copyright (c) 1994-2015 Synopsys, Inc.
* This parameter file and the associated documentation are proprietary
* to Synopsys, Inc. This parameter file may only be used in accordance
* with the terms and conditions of a written license agreement with
* Synopsys, Inc. All other use, reproduction, or distribution of this
* parameter file is strictly prohibited.
Material = "Metal" {
Epsilon
{ * Ratio of the permittivities of material and vacuum
* epsilon() = epsilon
epsilon = 0.0000e+00 # [1]
}
Epsilon_aniso
{ * Ratio of the permittivities of material and vacuum
* epsilon() = epsilon
epsilon = 0.0000e+00 # [1]
}
RefractiveIndex
{ * Optical Refractive Index
* refractiveindex() = refractiveindex * (1 + alpha * (T-Tpar))
Tpar = 3.0000e+02 # [K]
refractiveindex = 0.0000e+00 # [1]
alpha = 2.0000e-04 # [1/K]
* Gain dependence of refractive index in active region:
* a) Linear model: delta n = a0 * ( (n+p)/(2 * N0) - 1)
* b) Logarithmic model: delta n = a0 * log ( (n+p)/(2 * N0) )
* where n/p are the carrier densities in the active region.
a0 = 0.0000e+00 # [1]
N0 = 1.0000e+18 # [1/cm^3]
}
ComplexRefractiveIndex
{ * Complex refractive index model: n_complex = n + i*k (unitless)
*
* with n = n_0 + delta_n_lambda + delta_n_T + delta_n_carr + delta_n_gain
* k = k_0 + delta_k_lambda + delta_k_carr
* Base refractive index and extinction coefficient:
* n_0, k_0
* Wavelength dependence (real and imag):
* Formula 0: delta_n_lambda = Cn_lambda * lambda + Dn_lambda * lambda^2
* delta_k_lambda = Ck_lambda * lambda + Dk_lambda * lambda^2
* Formula 1: Read tabulated values
* NumericalTable (...)
* Formula 2: Read tabulated values from file
* NumericalTable = <string>
* Temperature dependence (real):
* delta_n_T = n_0 * ( Cn_temp * (T-Tpar))
* Carrier dependence (real)
* delta_n_carr = - Cn_carr * (const.) * (n/m_e + p/m_h)
* Carrier dependence (imag)
* delta_k_carr = 1 / (4*PI) * (wavelength^Gamma_k_carr_e*Ck_carr_e*n + wavelength^Gamma_k_carr_h*Ck_carr_h*p)
* Gain dependence (real)
* lin: delta_n_gain = Cn_gain * ( (n+p)/(2 * Npar) - 1)
* log: delta_n_gain = Cn_gain * log ( (n+p)/(2 * Npar ) )
n_0 = 1 # [1]
k_0 = 0.0000e+00 # [1]
Cn_lambda = 0.0000e+00 # [um^-1]
Dn_lambda = 0.0000e+00 # [um^-2]
Ck_lambda = 0.0000e+00 # [um^-1]
Dk_lambda = 0.0000e+00 # [um^-2]
Cn_temp = 2.0000e-04 # [K^-1]
Cn_carr = 1 # [1]
Ck_carr = 0.0000e+00 , 0.0000e+00 # [cm^2]
Gamma_k_carr = 1 , 1 # [1]
Cn_gain = 0.0000e+00 # [1]
Npar = 1.0000e+18 # [cm^-3]
Formula = 0
Tpar = 3.0000e+02 # [K]
}
* SpectralConversion
* { * Spectral Conversion Model
* No default model, user has to define.
* All wavelength parameters should be in nanometers.
* Choice of Analytic or NumericalTable selected in Physics section of region
*
* ConversionEfficiency = float * ratio of absorbed photons that are reemitted.
* AbsorptionScaling = float * scale absorption
* EmissionScaling = float * scale emission
* Analytic (
* AbsorptionProfile = (
* Gaussian(lambda0 sigma peakvalue dc_offset lambda_range0 lambda_range1)
* Lorentzian(lambda0 width peakvalue dc_offset lambda_range0 lambda_range1)
* ...
* )
* EmissionProfile = (
* Gaussian(lambda0 sigma peakvalue dc_offset lambda_range0 lambda_range1)
* Lorentzian(lambda0 width peakvalue dc_offset lambda_range0 lambda_range1)
* ...
* )
* )
* NumericalTable (
* AbsorptionProfile = (
* lambda0 value0
* lambda1 value1
* ...
* )
* EmissionProfile = (
* lambda0 value0
* lambda1 value1
* ...
* )
* ConversionEfficiency = 1.0
* }
LatticeHeatCapacity
{ * lumped electron-hole-lattice heat capacity
* cv() = cv + cv_b * T + cv_c * T^2 + cv_d * T^3
cv = 0.0000e+00 # [J/(K cm^3)]
cv_b = 0.0000e+00 # [J/(K^2 cm^3)]
cv_c = 0.0000e+00 # [J/(K^3 cm^3)]
cv_d = 0.0000e+00 # [J/(K^4 cm^3)]
}
Kappa
{ * Lattice thermal conductivity
* Formula = 1:
* kappa() = kappa + kappa_b * T + kappa_c * T^2
kappa = 2.38 # [W/(K cm)]
kappa_b = 0.0000e+00 # [W/(K^2 cm)]
kappa_c = 0.0000e+00 # [W/(K^3 cm)]
}
Kappa_aniso
{ * Lattice thermal conductivity
* Formula = 1:
* kappa() = kappa + kappa_b * T + kappa_c * T^2
kappa = 2.38 # [W/(K cm)]
kappa_b = 0.0000e+00 # [W/(K^2 cm)]
kappa_c = 0.0000e+00 # [W/(K^3 cm)]
}
Bandgap
{ * For conductors Band Gap is zero and the following parameters are used:
WorkFunction = 4.25 # [eV]
FermiEnergy = 11.7 # [eV]
* for backward compatibility Chi0 could be used to define the work function.
}
eDOSMass
{
* For effective mass specification Formula1 (me approximation):
* or Formula2 (Nc300) can be used :
Formula = 1 # [1]
* Formula1:
* me/m0 = [ (6 * mt)^2 * ml ]^(1/3) + mm
* mt = a[Eg(0)/Eg(T)]
* Nc(T) = 2(2pi*kB/h_Planck^2*me*T)^3/2 = 2.5094e19 ((me/m0)*(T/300))^3/2
a = 0.0000e+00 # [1]
ml = 0.0000e+00 # [1]
mm = 1 # [1]
}
SchroedingerParameters:
{ * For the hole masses for Schroedinger equation you can
* use different formulas.
* 0: use the isotropic density of states effective mass
* 1: (for materials with Si-like hole band structure)
* m(k)/m0=1/(A+-sqrt(B+C*((xy)^2+(yz)^2+(zx)^2)))
* where k=(x,y,z) is unit normal vector in reziprocal
* space. '+' for light hole band, '-' for heavy hole band
* 2: Heavy hole mass mh and light hole mass ml are
* specified explicitly.
* Use me as electron mass for free-carrier effect in
* the refractive index model.
* For electron masses, the following formula options exist:
* 0: use the isotropic density of states effective mass
* 1: (for materials with Si-like hole band structure)
* use the a, ml, and mm parameters from eDOSMass.
* Typically, this leads to anisotropy.
formula = 0 , 3 # [1]
* Lifting of degeneracy of bulk valleys. The value for
* electrons is added to the band edge for the subband
* ladder of lower degeneracy if positive, and subtracted
* from the band edge for the ladder of higher degeneracy
* if negative. (that is, the value of the band edge is
* always increased). For holes, the value is subtracted from
* the band edge for the heavy hole band is positive,
* add added tp that of the light hole band if
* negative. The signs are such that the shift always
* moves the band edges 'outward', away from midgap. The
* gap itself is defined as the separation of the
* unshifted band edges and remains unaffected.
offset = 0.0000e+00 , 0.0000e+00 # [eV]
* Alternative to the specification of formula, offset,
* and masses, you can make an arbitrary number of ladder
* specification, 'eLadder(mz, mxy, deg, dE) and hLadder(...)
* Here, mz is the quantization mass, mxy an in-plane DOS mass,
* deg the ladder degeneracy, and dE an shift of the band edge
* for the ladder (non-negative; the shift is always outward,
* away from midgap). When present, we solve the Schroedinger
* equation separately for each ladder
* Temperatures in rescaling of the mxy for eLadder and hLadder
ShiftTemperature = 1.0000e+10 , 1.0000e+10 # [K]
}
MMPeltierHeat
{ * Metal/Metal Peltier heat parameters
* Hpeltier = alpha*j*T*Pdiff Peltier Heat
* where:
* j is the current density
* alpha is an adjustable parameter
* Pdiff is Seeback coefficients difference at interface
alpha = 1 # [1]
}
Resistivity
{ * Resist(T) = Resist0 * ( 1 + TempCoef * ( T - 273 ) )
Resist0 = 2.4500e+10 # [ohm*cm]
TempCoef = 4.5000e-03 # [1/K]
}
}