-
Notifications
You must be signed in to change notification settings - Fork 6
/
improvelog.txt
435 lines (416 loc) · 8.28 KB
/
improvelog.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
Gmk0
NN Policy
input 15*15*2
conv1 3*3*2*16 SAME relu
conv2 3*3*16*48 SAME relu
conv3 3*3*48*96 SAME relu
conv4 3*3*96*96 SAME relu
conv5 3*3*96*96 SAME relu
conv6 3*3*96*96 SAME relu
conv7 3*3*96*96 SAME relu
conv8 3*3*96*1 SAME relu
fc1 reshape conv8 15*15
y softmax fc1
Loss cross_enptroy
NN Value
input 15*15*2
conv1 3*3*2*16 SAME relu
conv2 3*3*16*48 SAME relu
conv3 3*3*48*96 SAME relu
conv4 3*3*96*96 SAME relu
conv5 3*3*96*96 SAME relu
conv6 3*3*96*96 SAME relu
conv7 3*3*96*96 SAME relu
conv8 3*3*96*1 SAME relu
fc1 reshape conv8 225 relu
y matmul fc1
Loss avg_sqr
GameRecord
int stepcount
int[stepcount] move form 0 to 225
int winner 0,1,2
GameTrainData
int stepcount
int[stepcount] move
pos
prob, move
pos policy[stepcount][225] sigma policy=1
int winner for z
mini_batch
int count
GameTrainData[count]
12-30
target: conv->res
+bn, +dual
1-22
starting SL test
problem: speed of mcts too slow
1-23
SL test ok
completed NN estimate
generate data test
optimized mcts selection, 2-3x speed up
1-24
self dataset ok, but found a few problem
add dirlect noise
start iteration 0
1-25
found small fault at iteration 0
output of winner reversed(correct by retransdata)
a small fault in SL data transform and a big fault in It0 data trans.(fixed)
1-26
iteration 0 ok
test shows decay_reward is important (decay=0.85)
weight_0 vs random
w 41 9
b 44 6
85% PASS
1-27
optimzed tree search, 3x speed up
1-28
training I1, decay=0.88 le=0.05 step=16k
weight_1 vs weight_0
w 29 21
b 32 18
61% PASS
tringing I2, decay=0.88 le=0.05 step=16k
1-29
weight_2 vs weight_1
w 33 17
b 32 18
65% PASS
training I3, decay=0.88 le=0.05 step=16k
weight_3 vs weight_2
w 30 20
b 29 21
59% PASS
weight_3 vs weight_1
w 37 13
b 37 13
extra test ok
training I4, decay=0.88 le=0.05 step=16k
weight_4 vs weight_3
w 31 19
b 43 7
74% PASS
1-30
training I5, decay=0.88 le=0.05 step=16k
weight_5 vs weight_4
w 29 21
b 30 20
59% PASS
training I6, decay=0.89 le=0.05 step=16k
w 36 14
b 32 18
68% PASS
1-31
training I7, decay=0.89 le=0.05 step=16k
w 49 1
b 35 15
84% PASS
training I8, decay=0.89 le=0.05 step=16k
w 47 3
b 26 24
73% PASS
2-1
fpu frac changed to 1.3
training I9, decay=0.89 le=0.05 step=16k
w 36 14
b 26 24
62%PASS
training I10, decay=0.89 le=0.05 step=16k
w 45 5
b 15 35
60%PASS
2-2
training I11, decay=0.89 le=0.05 step=16k
w 43 7
b 24 26
67%PASS
find huge bug in data_gathering, trying to fix it
(Iteration 1-11 will strongly effected)
bug fixed
training I12, decay=0.89 le=0.05 step=16k
w 43 7
b 41 9
84%PASS
weight_12 vs SL test
w 14 36
b 14 36
good progress!
2-3
training I13, decay=0.9 le=0.05 step=16k
w 41 9
b 48 2
89%PASS
training I14, decay=0.9 le=0.05 step=16k
w 35 15
b 44 6
79%PASS
2-4
training I15, decay=0.92 le=0.05 step=16k
w 35 15
b 41 9
76%PASS
training I16, decay=0.93 le=0.05 step=16k
w 36 14
b 45 5
81%PASS
weight_16 vs SL test
w 23 27
b 27 23
50% maybe overfitting
weight_16_puct=0.8 vs weight_16_puct=1.6
w 26 24
b 37 13
weight_16_puct=1.6 vs weight_16_puct=1.6
w 10 40
b 47 3
weight_16_puct=1.2 vs weight_16_puct=1.6
w 12 38
b 36 14
weight_16_puct=0.5 vs weight_16_puct=1.6
w 14 36
b 32 18
puct now set to 0.8
2-5
training I17, decay=0.94 le=0.05 step=16k
w 35 15
b 44 6
79%PASS
add random transform in training
training I18, decay=0.95 le=0.05 step=16k
w 21 29
b 26 24
47%
training I19, decay=0.95 le=0.05 step=16k
w 24 26
b 37 13
61%PASS
training I20, decay=0.95 le=0.05 step=16k
w 22 28
b 36 14
58%
2-7
finished cpp search
2-8
add command line paras
2-9
add gmk protrol support
2-10
add match player
2-11
I0 vs random
b 43 7
w 34 13
77%PASS
2-12
fixed bug, restart
I0 vs random
b 42 8
w 34 16
76%PASS
training I1 step=16k, lr=0.05, decay=0.87, mse_factor=2.0
I1 vs I0
b 48 2
w 46 4
94%PASS
2-13
selfplay I1, puct=1
training I2 step=16k, lr=0.05, decay=0.89, mse_factor=2.0
training I2z step=16k, lr=0.05, decay=0.89, mse_factor=1.0
I2 vs I1
b 50 0
w 47 3
97%PASS
I2z vs I2 failed
training I3 step=16k, lr=0.05, decay=0.89, mse_factor=2.0
training I3z step=16k, lr=0.05, decay=0.89, mse_factor=1.0
training I3-6000 step=6k, lr=0.05, decay=0.89, mse_factor=2.0
training I3p step=16k, lr=0.02, decay=0.89, mse_factor=2.0
training I3d step=16k, lr=0.05, decay=0.92, mse_factor=2.0
I3 vs I2
b 49 1
w 40 10
89%PASS
I3z vs I3
b 35 15
w 15 35
I3-6000 vs I3
b 13 37
w 4 46
I3p vs I3
b 41 9
w 12 38
I3d vs I3
b 35 15
w 14 36
2-14
training I4 step=16k, lr=0.03, decay=0.91, mse_factor=1.5
I4 vs I3
b 47 3
w 21 29
68% PASS
training I5 step=16k, lr=0.03, decay=0.92, mse_factor=1.5
I5 vs I4
b 46 4
w 37 13
83% PASS
2-15
training I6 step=16k, lr=0.03, decay=0.92, mse_factor=1.5
I6 vs I5
b 38 12
w 27 23
65% PASS
training I7 step=16k, lr=0.03, decay=0.93, mse_factor=1.5
I7 vs I6
b 36 14
w 21 29
57% PASS
training I8 step=16k, lr=0.03, decay=0.95, mse_factor=1.5
I8 vs I7
b 39 11
w 30 20
69% PASS
2-16
training I9 step=16k, lr=0.03, decay=0.95, mse_factor=1.5, bs=192
I9 vs I8
b 33 17
w 34 16
67% PASS
training I10 step=16k, lr=0.03, decay=0.96, mse_factor=1.5, bs=192
I10 vs I9
b 42 8
w 29.5 20.5
71.5% PASS
2-17
training I11 step=16k, lr=0.03, decay=0.97, mse_factor=1.5, bs=192
I11 vs I10
b 31 19
w 31.5 18.5
62.5% PASS
2-18
training I12 step=16k, lr=0.03, decay=0.97, mse_factor=1, bs=192
I12 vs I11
b 35 15
w 36 14
71% PASS
training I13 step=16k, lr=0.03, decay=0.975, mse_factor=0.6, bs=192
I13 vs I12
b 37 13
w 28 22
62% PASS
2-19
training I14_0 step=16k, lr=0.03, decay=0.975, mse_factor=1, bs=192 56%
training I14_0 step=16k, lr=0.03, decay=0.975, mse_factor=0.6, bs=192 55%
training I14 step=16k, lr=0.03, decay=0.98, mse_factor=1, bs=192
I14 vs I13
b 35
w 26
puct:1.3->1.4
training I15 step=16k, lr=0.03, decay=0.98, mse_factor=0.6, bs=192
I15 vs I14
b 41
w 29
2-20
training I16 step=16k, lr=0.03, decay=0.98, mse_factor=0.6, bs=192
I16 vs I15
b 34
w 31
2-21
training I17 step=16k, lr=0.06, decay=0.97, mse_factor=1, bs=192
I17 vs I16
b 39
w 23
training I18 step=16k, lr=0.06, decay=0.97, mse_factor=1, bs=192
I18 vs I17
b 39
w 24
2-22
training I20 step=16k, lr=0.06, decay=0.97, mse_factor=1, bs=192
I20 vs I19
b 41
w 26.5
2-23
changed to 6b64f
training I21 step=16k, lr=0.05, decay=0.97, mse_factor=1, bs=192
I21 vs I20
b 38
w 31.5
I22 vs I21
b 36
w 25
2-24
training I23 step=16k, lr=0.05, decay=0.97, mse_factor=0.6, bs=192
I23 vs I22
b 31
w 26
I24 vs I23
b 41
w 26
2-25
I25 vs I24
b 45
w 16
2-26
I26 vs I25
b 50
w 11.5
I27 vs I26
b 41
w 19
2-27
I28 vs I27
b 40
w 18
training I29t1 step=2k, lr=0.005, decay=0.97, mse_factor=1, bs=128
2-28
I29t1 vs I28
b 40
w 26
training I30 step=4k, lr=0.002, decay=0.98, mse_factor=1, bs=128
I30 vs I29t1
b 41
w 29
3-1
I31 vs I30
b 41
w 28
I32 vs I31
b 35
w 23
3-2
I33 vs I32
b 38
w 17
3-3
training I34s step=2k, lr=0.001, decay=0.98, mse_factor=1, bs=192
I34s vs I33
b 38
w 20.5
training I35 step=4k, lr=0.001, decay=0.98, mse_factor=1, bs=128
I35 vs I34s
b 41
w 14
3-8
puct changed to 1.6
training I38s step=2k, lr=0.002, decay=0.98, mse_factor=1, bs=128
I38s vs J37t
b 38
w 19
training I39s step=2k, lr=0.002, decay=0.98, mse_factor=1, bs=192
I39s vs I38s
b 36
w 17
3-9
add mc_win output
current target_Q: z^decay
new target_Q(test): alpha * z^dacay + (1-alpha)*(mc_win^mc_decay)
alpha 0.6
decay first_z 0.4
mcdecay 0.75
tau1 0.8 tau2 0.6
training I40f step=2k, lr=0.002, decay=0.98, mse_factor=1, bs=128
I40s vs I39s
b 38
w 16