-
Download data from the official ScanNet++.
-
Preprocess raw data by running:
python preprocess_raw_data.py --path_to_data path_to_dataset --output_dir path_to_save_preprocessed_raw_data
- Generate bins and pkls data by running:
python prepare_bins_pkls.py --path_to_data path_to_preprocessed_raw_data --path_to_save_bins path_to_save_bins
Overall you achieve the following file structure in bins
directory:
bins
├── bboxs
│ ├── xxxxx_xx.npy
├── instance_mask
│ ├── xxxxx_xx.bin
├── points
│ ├── xxxxx_xx.bin
├── semantic_mask
│ ├── xxxxx_xx.bin
├── superpoints
│ ├── xxxxx_xx.bin
├── scannetpp_infos_train.pkl
├── scannetpp_infos_val.pkl
├── scannetpp_infos_test.pkl