forked from bazingagin/npc_gzip
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
549 lines (426 loc) · 15.7 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import csv
import os
import random
from collections import OrderedDict, defaultdict
import numpy as np
import torch
import unidecode
from datasets import load_dataset
from sklearn.datasets import fetch_20newsgroups
from torch.utils.data import DataLoader, Subset
def _load_csv_filepath(csv_filepath: str) -> list:
"""
Loads three elements from a csv file and appends
them to a list.
Arguments:
csv_filepath (str): Filepath to .csv file.
Returns:
list: 2-dimensional list containing three elements.
"""
data = []
with open(fn, "r") as f:
reader = csv.reader(f, delimiter=",", quotechar='"')
for row in reader:
data.append([row[0], row[1], row[2]])
return data
def read_fn_label(fn: str) -> dict:
"""
Reads `fn` and returns the a dictionary
containing the title+description: label
pair.
Arguments:
fn (str): Filepath to a csv file containing label, title, description.
Returns:
dict: {title. description: label} pairings.
"""
text2label = {}
data = _load_csv_filepath(fn)
for row in data:
label, title, desc = row[0], row[1], row[2]
text = ". ".join([title, desc])
text2label[text] = label
return text2label
def read_label(fn: str) -> list:
"""
Reads the first item from the `fn` csv filepath in each row.
Arguments:
fn (str): Filepath to a csv file containing label, title, description.
Returns:
list: Labels from the `fn` filepath.
"""
labels = [row[0] for row in _load_csv_filepath(fn)]
return labels
def read_fn_compress(fn: str) -> list:
"""
Opens a compressed file and returns the contents
and delimits the contents on new lines.
Arguments:
fn (str): Filepath to a compressed file.
Returns:
list: Compressed file contents line separated.
"""
text = unidecode.unidecode(open(fn).read())
text_list = text.strip().split("\n")
return text_list
def read_torch_text_labels(dataset: list, indices: list):
"""
Extracts the text and labels lists from a pytorch
`dataset` on `indices`.
Arguments:
dataset (list): List of lists containing text and labels.
indices (list): List of list indices to extract text and
labels on from `dataset`.
Returns:
[list, list]: Text and Label pairs from `dataset` on `indices`.
"""
text_list = []
label_list = []
print(indices, len(dataset))
"""
for index in indices:
try:
row = dataset[index]
except IndexError:
row = None
pass
if row:
label_list.append(row[0])
text_list.append(row[1])
"""
print(indices)
if indices[-1] + 1 == len(dataset):
for row in dataset:
if row:
label_list.append(row[0])
text_list.append(row[1])
return text_list, label_list
def load_20news():
"""
Loads the 20NewsGroups dataset from `torchtext`.
Returns:
tuple: Tuple of Lists, with training data at index 0 and test at
index 1.
"""
def process(dataset):
pairs = []
for i in range(len(dataset.data)):
text = dataset.data[i]
label = dataset.target[i]
pairs.append((label, text))
return pairs
newsgroups_train = fetch_20newsgroups(subset="train")
newsgroups_test = fetch_20newsgroups(subset="test")
train_ds, test_ds = process(newsgroups_train), process(newsgroups_test)
return train_ds, test_ds
def load_ohsumed_single(local_directory: str) -> tuple:
"""
Loads the Ohsumed dataset from `local_directory`
assumes the existence of subdirectories `training`
and `test`.
:ref: https://paperswithcode.com/dataset/ohsumed
Arguments:
local_directory (str): Local path to directory containing the Ohsumed
`training` and `test` subdirectories.
Returns:
tuple: Pair of training and testing datasets.
"""
def process(data_directory: str) -> list:
dataset = []
# TODO: Replace with `glob` to crawl files into a list.
for directory_name in os.listdir(data_directory):
subdirectory_path = os.path.join(data_directory, directory_name)
if os.path.isdir(subdirectory_path):
label = directory_name
for filename in os.listdir(subdirectory_path):
filepath = os.path.join(subdirectory_path, filename)
if os.path.isfile(filepath):
text = open(filepath).read().strip()
dataset.append((label, text))
return dataset
train_dir = os.path.join(local_directory, "training")
test_dir = os.path.join(local_directory, "test")
train_ds, test_ds = process(train_dir), process(test_dir)
return train_ds, test_ds
def load_ohsumed(data_directory: str, split: float = 0.9) -> tuple:
"""
Loads the Ohsumed dataset and performs a train-test-split.
Arguments:
data_directory (str): Directory containing the ohsumed dataset.
split (float): % train size split.
Returns:
tuple: Tuple of lists containing the training and testing datasets respectively.
"""
train_ds = []
test_ds = []
for directory_name in os.listdir(data_directory):
if os.path.isdir(os.path.join(data_directory, directory_name)):
label = directory_name
subdirectory = os.path.join(data_directory, directory_name)
subdirectory_files = list(os.listdir(subdirectory))
for filename in subdirectory_files:
text = open(os.path.join(subdirectory, filename), "r").read().strip()
if random.random() <= split:
train_ds.append((label, text))
else:
test_ds.append((label, text))
return train_ds, test_ds
def load_r8(data_directory: str, delimiter: str = "\t") -> tuple:
"""
Loads the R8 dataset.
Arguments:
data_directory (str): Directory containing the R8 dataset.
delimiter (str): File delimiter to parse on.
Returns:
tuple: Tuple of lists containing the training and testing datasets respectively.
"""
def process(filename: str) -> list:
processed_data = []
text_list = open(filename, "r").read().strip().split("\n")
for row in text_list:
label, text = row.split(delimiter)
processed_data.append((label, text))
return processed_data
test_fn = os.path.join(data_directory, "test.txt")
train_fn = os.path.join(data_directory, "train.txt")
train_ds, test_ds = process(train_fn), process(test_fn)
return train_ds, test_ds
def load_trec(data_directory: str) -> tuple:
"""
Loads the TREC dataset from a directory.
Arguments:
data_directory (str): Directory containing the TREC dataset.
Returns:
tuple: Tuple of lists containing the training and testing datasets respectively.
"""
def process(filename: str) -> list:
processed_data = []
with open(fn, encoding="ISO-8859-1") as fo:
reader = csv.reader(fo, delimiter=":")
for row in reader:
label, text = row[0], row[1]
processed_data.append((label, text))
return processed_data
test_fn = os.path.join(data_directory, "test.txt")
train_fn = os.path.join(data_directory, "train.txt")
train_ds, test_ds = process(train_fn), process(test_fn)
return train_ds, test_ds
def load_kinnews_kirnews(
dataset_name: str = "kinnews_kirnews", data_split: str = "kinnews_cleaned"
):
"""
Loads the KINNEWS and KIRNEWS datasets.
:ref: https://huggingface.co/datasets/kinnews_kirnews
Arguments:
dataset_name (str): Name of the dataset to be loaded.
data_split (str): The data split to be loaded.
Returns:
tuple: Tuple of lists containing the training and testing datasets respectively.
"""
def process(data_directory: str):
pairs = []
for pair in data_directory:
label = pair["label"]
title = pair["title"]
content = pair["content"]
pairs.append((label, title + " " + content))
return pairs
ds = load_dataset(dataset_name, data_split)
train_ds, test_ds = process(ds["train"]), process(ds["test"])
return train_ds, test_ds
def load_swahili() -> tuple:
"""
Loads the Swahili dataset
Returns:
tuple: Tuple of lists containing the training and testing datasets respectively.
"""
def process(dataset: list) -> list:
pairs = []
for pair in dataset:
label = pair["label"]
text = pair["text"]
pairs.append((label, text))
return pairs
ds = load_dataset("swahili_news")
train_ds, test_ds = process(ds["train"]), process(ds["test"])
return train_ds, test_ds
def load_filipino():
"""
deprecated - datasets on huggingface have overlapped train&test
Loads the Dengue Filipino dataset
Returns:
tuple: Tuple of lists containing the training and testing datasets respectively.
"""
def process(dataset: list) -> list:
label_dict = OrderedDict()
d = {"absent": 0, "dengue": 1, "health": 2, "mosquito": 3, "sick": 4}
for k, v in d.items():
label_dict[k] = v
pairs = []
for pair in dataset:
text = pair["text"]
for k in label_dict:
if pair[k] == 1:
label = label_dict[k]
pairs.append((label, text))
return pairs
ds = load_dataset("dengue_filipino")
train_ds, test_ds = process(ds["train"]), process(ds["test"])
return train_ds, test_ds
def read_img_with_label(dataset: list, indices: list, flatten=True):
"""
Loads items from `dataset` based on the indices listed in `indices`
and optionally flattens them.
Arguments:
dataset (list): List of images.
indices (list): indices of `dataset` to be returned.
flatten (bool): [Optional] Optionally flatten the image.
Returns:
tuple: (np.ndarray, np.ndarray) of images and labels respectively
"""
imgs = []
labels = []
for idx in indices:
img = np.array(dataset[idx][0])
label = dataset[idx][1]
if flatten:
img = img.flatten()
imgs.append(img)
labels.append(label)
return np.array(imgs), np.array(labels)
def read_img_label(dataset: list, indices: list) -> list:
"""
Given an image dataset and a list of indices,
this function returns the labels from the dataset.
Arguments:
dataset (list): List of images.
indices (list): indices of `dataset` to be returned.
Returns:
list: Image labels.
"""
labels = []
for idx in indices:
label = dataset[idx][1]
labels.append(label)
return labels
def pick_n_sample_from_each_class(
filename: str, n_samples: int, idx_only: bool = False
) -> tuple:
"""
Grabs a random sample of size `n_samples` for each label from the csv file
at `filename`.
Arguments:
filename (str): Relative path to the file you want to load.
n_samples (int): Number of samples to load and return for each label.
idx_only (bool): True if you only want to return the indices of the rows
to load.
Returns:
list | tuple: List if idx_only, else tuple of samples and labels.
"""
label2text = defaultdict(list)
label2idx = defaultdict(list)
class2count = {}
result = []
labels = []
recorded_idx = []
data = _load_csv_filepath(filename)
for i, (label, title, description) in enumerate(data):
text = ". ".join([title, description])
label2text[label].append(text)
label2idx[label].append(i)
for class_ in label2text:
class2count[class_] = len(label2text[class_])
for c in class2count:
select_idx = np.random.choice(class2count[c], size=n_samples, replace=False)
select_text = np.array(label2text[c])[select_idx]
select_text_idx = np.array(label2idx[c])[select_idx]
recorded_idx += list(select_text_idx)
result += list(select_text)
labels += [c] * n_samples
if idx_only:
return recorded_idx
return result, labels
def pick_n_sample_from_each_class_given_dataset(
dataset: list, n_samples: int, output_filename: str = None, index_only: bool = False
) -> tuple:
"""
Grabs a random sample of size `n_samples` for each label from the dataset
`dataset`.
Arguments:
dataset (list): Relative path to the file you want to load.
n_samples (int): Number of samples to load and return for each label.
output_filename (str): [Optional] Where to save the recorded indices.
index_only (bool): True if you only want to return the indices of the rows
to load.
Returns:
list | tuple: List if idx_only, else tuple of samples and labels.
"""
label2text = defaultdict(list)
label2idx = defaultdict(list)
class2count = {}
result = []
labels = []
recorded_idx = []
for i, (label, text) in enumerate(dataset):
label2text[label].append(text)
label2idx[label].append(i)
for cl in label2text:
class2count[cl] = len(label2text[cl])
for c in class2count:
select_idx = np.random.choice(class2count[c], size=n_samples, replace=False)
select_text = np.array(label2text[c])[select_idx]
select_text_idx = np.array(label2idx[c])[select_idx]
recorded_idx += list(select_text_idx)
result += list(select_text)
labels += [c] * n_samples
if output_filename is not None:
np.save(output_filename, np.array(recorded_idx))
if index_only:
return np.array(recorded_idx), labels
return result, labels
def pick_n_sample_from_each_class_img(
dataset: list, n_samples: int, flatten: bool = False
) -> tuple:
"""
Grabs a random sample of size `n_samples` for each label from the dataset
`dataset`.
Arguments:
dataset (list): Relative path to the file you want to load.
n_samples (int): Number of samples to load and return for each label.
flatten (bool): True if you want to flatten the images.
Returns:
tuple: Tuple of samples, labels, and the recorded indices.
"""
label2img = defaultdict(list)
label2idx = defaultdict(list)
class2count = {}
result = []
labels = []
recorded_idx = [] # for replication
for i, pair in enumerate(dataset):
img, label = pair
if flatten:
img = np.array(img).flatten()
label2img[label].append(img)
label2idx[label].append(i)
for cl in label2img:
class2count[cl] = len(label2img[cl])
for c in class2count:
select_idx = np.random.choice(class2count[c], size=n_samples, replace=False)
select_img = np.array(label2img[c])[select_idx]
select_img_idx = np.array(label2idx[c])[select_idx]
recorded_idx += list(select_img_idx)
result += list(select_img)
labels += [c] * n_samples
return result, labels, recorded_idx
def load_custom_dataset(di, delimiter='\t'):
def process(fn):
l = []
text_list = open(fn).read().strip().split('\n')
for t in text_list:
label, text = t.split(delimiter)
l.append((label, text))
return l
test_fn = os.path.join(di, 'test.txt')
train_fn = os.path.join(di, 'train.txt')
train_ds, test_ds = process(train_fn), process(test_fn)
return train_ds, test_ds