-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutil.py
77 lines (62 loc) · 2.57 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Most code taken and adapted from:
# https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
def _plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=plt.cm.Blues,
ax=None):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Only use the labels that appear in the data
classes = classes[unique_labels(y_true, y_pred)]
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
if ax is None:
ax = plt.subplot()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
def plot_confusion_matrix(y_true, y_pred, classes):
np.set_printoptions(precision=2)
fig = plt.figure(figsize=(10, 4))
# Plot non-normalized confusion matrix
ax = plt.subplot(121)
_plot_confusion_matrix(y_true, y_pred, classes, ax=ax,
title='Confusion matrix, without normalization')
# Plot normalized confusion matrix
ax = plt.subplot(122)
_plot_confusion_matrix(y_true, y_pred, classes, ax=ax, normalize=True,
title='Normalized confusion matrix')
fig.tight_layout()
return fig