forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
box_with_nms_limit_op.cc
301 lines (266 loc) · 10.1 KB
/
box_with_nms_limit_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#include "box_with_nms_limit_op.h"
#include "caffe2/utils/eigen_utils.h"
#include "generate_proposals_op_util_nms.h"
namespace caffe2 {
template <>
bool BoxWithNMSLimitOp<CPUContext>::RunOnDevice() {
const auto& tscores = Input(0);
const auto& tboxes = Input(1);
auto* out_scores = Output(0);
auto* out_boxes = Output(1);
auto* out_classes = Output(2);
const int box_dim = rotated_ ? 5 : 4;
// tscores: (num_boxes, num_classes), 0 for background
if (tscores.ndim() == 4) {
CAFFE_ENFORCE_EQ(tscores.dim(2), 1, tscores.dim(2));
CAFFE_ENFORCE_EQ(tscores.dim(3), 1, tscores.dim(3));
} else {
CAFFE_ENFORCE_EQ(tscores.ndim(), 2, tscores.ndim());
}
CAFFE_ENFORCE(tscores.template IsType<float>(), tscores.meta().name());
// tboxes: (num_boxes, num_classes * box_dim)
if (tboxes.ndim() == 4) {
CAFFE_ENFORCE_EQ(tboxes.dim(2), 1, tboxes.dim(2));
CAFFE_ENFORCE_EQ(tboxes.dim(3), 1, tboxes.dim(3));
} else {
CAFFE_ENFORCE_EQ(tboxes.ndim(), 2, tboxes.ndim());
}
CAFFE_ENFORCE(tboxes.template IsType<float>(), tboxes.meta().name());
int N = tscores.dim(0);
int num_classes = tscores.dim(1);
CAFFE_ENFORCE_EQ(N, tboxes.dim(0));
CAFFE_ENFORCE_EQ(num_classes * box_dim, tboxes.dim(1));
int batch_size = 1;
vector<float> batch_splits_default(1, tscores.dim(0));
const float* batch_splits_data = batch_splits_default.data();
if (InputSize() > 2) {
// tscores and tboxes have items from multiple images in a batch. Get the
// corresponding batch splits from input.
const auto& tbatch_splits = Input(2);
CAFFE_ENFORCE_EQ(tbatch_splits.ndim(), 1);
batch_size = tbatch_splits.dim(0);
batch_splits_data = tbatch_splits.data<float>();
}
Eigen::Map<const EArrXf> batch_splits(batch_splits_data, batch_size);
CAFFE_ENFORCE_EQ(batch_splits.sum(), N);
out_scores->Resize(0);
out_boxes->Resize(0, box_dim);
out_classes->Resize(0);
Tensor* out_keeps = nullptr;
Tensor* out_keeps_size = nullptr;
if (OutputSize() > 4) {
out_keeps = Output(4);
out_keeps_size = Output(5);
out_keeps->Resize(0);
out_keeps_size->Resize(batch_size, num_classes);
}
vector<int> total_keep_per_batch(batch_size);
int offset = 0;
for (int b = 0; b < batch_splits.size(); ++b) {
int num_boxes = batch_splits(b);
Eigen::Map<const ERArrXXf> scores(
tscores.data<float>() + offset * tscores.dim(1),
num_boxes,
tscores.dim(1));
Eigen::Map<const ERArrXXf> boxes(
tboxes.data<float>() + offset * tboxes.dim(1),
num_boxes,
tboxes.dim(1));
// To store updated scores if SoftNMS is used
ERArrXXf soft_nms_scores(num_boxes, tscores.dim(1));
vector<vector<int>> keeps(num_classes);
// Perform nms to each class
// skip j = 0, because it's the background class
int total_keep_count = 0;
for (int j = 1; j < num_classes; j++) {
auto cur_scores = scores.col(j);
auto inds = utils::GetArrayIndices(cur_scores > score_thres_);
auto cur_boxes = boxes.block(0, j * box_dim, boxes.rows(), box_dim);
if (soft_nms_enabled_) {
auto cur_soft_nms_scores = soft_nms_scores.col(j);
keeps[j] = utils::soft_nms_cpu(
&cur_soft_nms_scores,
cur_boxes,
cur_scores,
inds,
soft_nms_sigma_,
nms_thres_,
soft_nms_min_score_thres_,
soft_nms_method_);
} else {
std::sort(
inds.data(),
inds.data() + inds.size(),
[&cur_scores](int lhs, int rhs) {
return cur_scores(lhs) > cur_scores(rhs);
});
int keep_max = detections_per_im_ > 0 ? detections_per_im_ : -1;
keeps[j] =
utils::nms_cpu(cur_boxes, cur_scores, inds, nms_thres_, keep_max);
}
total_keep_count += keeps[j].size();
}
if (soft_nms_enabled_) {
// Re-map scores to the updated SoftNMS scores
new (&scores) Eigen::Map<const ERArrXXf>(
soft_nms_scores.data(),
soft_nms_scores.rows(),
soft_nms_scores.cols());
}
// Limit to max_per_image detections *over all classes*
if (detections_per_im_ > 0 && total_keep_count > detections_per_im_) {
// merge all scores (represented by indices) together and sort
auto get_all_scores_sorted = [&scores, &keeps, total_keep_count]() {
// flatten keeps[i][j] to [pair(i, keeps[i][j]), ...]
// first: class index (1 ~ keeps.size() - 1),
// second: values in keeps[first]
using KeepIndex = std::pair<int, int>;
vector<KeepIndex> ret(total_keep_count);
int ret_idx = 0;
for (int i = 1; i < keeps.size(); i++) {
auto& cur_keep = keeps[i];
for (auto& ckv : cur_keep) {
ret[ret_idx++] = {i, ckv};
}
}
std::sort(
ret.data(),
ret.data() + ret.size(),
[&scores](const KeepIndex& lhs, const KeepIndex& rhs) {
return scores(lhs.second, lhs.first) >
scores(rhs.second, rhs.first);
});
return ret;
};
// Pick the first `detections_per_im_` boxes with highest scores
auto all_scores_sorted = get_all_scores_sorted();
DCHECK_GT(all_scores_sorted.size(), detections_per_im_);
// Reconstruct keeps from `all_scores_sorted`
for (auto& cur_keep : keeps) {
cur_keep.clear();
}
for (int i = 0; i < detections_per_im_; i++) {
DCHECK_GT(all_scores_sorted.size(), i);
auto& cur = all_scores_sorted[i];
keeps[cur.first].push_back(cur.second);
}
total_keep_count = detections_per_im_;
}
total_keep_per_batch[b] = total_keep_count;
// Write results
int cur_start_idx = out_scores->dim(0);
out_scores->Extend(total_keep_count, 50, &context_);
out_boxes->Extend(total_keep_count, 50, &context_);
out_classes->Extend(total_keep_count, 50, &context_);
int cur_out_idx = 0;
for (int j = 1; j < num_classes; j++) {
auto cur_scores = scores.col(j);
auto cur_boxes = boxes.block(0, j * box_dim, boxes.rows(), box_dim);
auto& cur_keep = keeps[j];
Eigen::Map<EArrXf> cur_out_scores(
out_scores->template mutable_data<float>() + cur_start_idx +
cur_out_idx,
cur_keep.size());
Eigen::Map<ERArrXXf> cur_out_boxes(
out_boxes->mutable_data<float>() +
(cur_start_idx + cur_out_idx) * box_dim,
cur_keep.size(),
box_dim);
Eigen::Map<EArrXf> cur_out_classes(
out_classes->template mutable_data<float>() + cur_start_idx +
cur_out_idx,
cur_keep.size());
utils::GetSubArray(
cur_scores, utils::AsEArrXt(cur_keep), &cur_out_scores);
utils::GetSubArrayRows(
cur_boxes, utils::AsEArrXt(cur_keep), &cur_out_boxes);
for (int k = 0; k < cur_keep.size(); k++) {
cur_out_classes[k] = static_cast<float>(j);
}
cur_out_idx += cur_keep.size();
}
if (out_keeps) {
out_keeps->Extend(total_keep_count, 50, &context_);
Eigen::Map<EArrXi> out_keeps_arr(
out_keeps->template mutable_data<int>() + cur_start_idx,
total_keep_count);
Eigen::Map<EArrXi> cur_out_keeps_size(
out_keeps_size->template mutable_data<int>() + b * num_classes,
num_classes);
cur_out_idx = 0;
for (int j = 0; j < num_classes; j++) {
out_keeps_arr.segment(cur_out_idx, keeps[j].size()) =
utils::AsEArrXt(keeps[j]);
cur_out_keeps_size[j] = keeps[j].size();
cur_out_idx += keeps[j].size();
}
}
offset += num_boxes;
}
if (OutputSize() > 3) {
auto* batch_splits_out = Output(3);
batch_splits_out->Resize(batch_size);
Eigen::Map<EArrXf> batch_splits_out_map(
batch_splits_out->template mutable_data<float>(), batch_size);
batch_splits_out_map =
Eigen::Map<const EArrXi>(total_keep_per_batch.data(), batch_size)
.cast<float>();
}
return true;
}
namespace {
REGISTER_CPU_OPERATOR(BoxWithNMSLimit, BoxWithNMSLimitOp<CPUContext>);
OPERATOR_SCHEMA(BoxWithNMSLimit)
.NumInputs(2, 3)
.NumOutputs(3, 6)
.SetDoc(R"DOC(
Apply NMS to each class (except background) and limit the number of
returned boxes.
)DOC")
.Arg("score_thresh", "(float) TEST.SCORE_THRESH")
.Arg("nms", "(float) TEST.NMS")
.Arg("detections_per_im", "(int) TEST.DEECTIONS_PER_IM")
.Arg("soft_nms_enabled", "(bool) TEST.SOFT_NMS.ENABLED")
.Arg("soft_nms_method", "(string) TEST.SOFT_NMS.METHOD")
.Arg("soft_nms_sigma", "(float) TEST.SOFT_NMS.SIGMA")
.Arg(
"soft_nms_min_score_thres",
"(float) Lower bound on updated scores to discard boxes")
.Arg(
"rotated",
"bool (default false). If true, then boxes (rois and deltas) include "
"angle info to handle rotation. The format will be "
"[ctr_x, ctr_y, width, height, angle (in degrees)].")
.Input(0, "scores", "Scores, size (count, num_classes)")
.Input(
1,
"boxes",
"Bounding box for each class, size (count, num_classes * 4). "
"For rotated boxes, this would have an additional angle (in degrees) "
"in the format [<optionaal_batch_id>, ctr_x, ctr_y, w, h, angle]. "
"Size: (count, num_classes * 5).")
.Input(
2,
"batch_splits",
"Tensor of shape (batch_size) with each element denoting the number "
"of RoIs/boxes belonging to the corresponding image in batch. "
"Sum should add up to total count of scores/boxes.")
.Output(0, "scores", "Filtered scores, size (n)")
.Output(
1,
"boxes",
"Filtered boxes, size (n, 4). "
"For rotated boxes, size (n, 5), format [ctr_x, ctr_y, w, h, angle].")
.Output(2, "classes", "Class id for each filtered score/box, size (n)")
.Output(
3,
"batch_splits",
"Output batch splits for scores/boxes after applying NMS")
.Output(4, "keeps", "Optional filtered indices, size (n)")
.Output(
5,
"keeps_size",
"Optional number of filtered indices per class, size (num_classes)");
SHOULD_NOT_DO_GRADIENT(BoxWithNMSLimit);
} // namespace
} // namespace caffe2