forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
functional.py
763 lines (608 loc) · 28.8 KB
/
functional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
import torch
import torch.nn.functional as F
from torch._six import inf
from operator import mul
from functools import reduce
import math
__all__ = [
'argmax',
'argmin',
'argsort',
'btrifact',
'btriunpack',
'chain_matmul',
'einsum',
'broadcast_tensors',
'isfinite',
'isinf',
'isnan',
'norm',
'meshgrid',
'split',
'stft',
'tensordot',
'unique',
]
def broadcast_tensors(*tensors):
r"""broadcast_tensors(*tensors) -> List of Tensors
Broadcasts the given tensors according to :ref:`_broadcasting-semantics`.
Args:
*tensors: any number of tensors of the same type
Example::
>>> x = torch.arange(3).view(1, 3)
>>> y = torch.arange(2).view(2, 1)
>>> a, b = torch.broadcast_tensors(x, y)
>>> a.size()
torch.Size([2, 3])
>>> a
tensor([[0, 1, 2],
[0, 1, 2]])
"""
return torch._C._VariableFunctions.broadcast_tensors(tensors)
def split(tensor, split_size_or_sections, dim=0):
r"""Splits the tensor into chunks.
If :attr:`split_size_or_sections` is an integer type, then :attr:`tensor` will
be split into equally sized chunks (if possible). Last chunk will be smaller if
the tensor size along the given dimension :attr:`dim` is not divisible by
:attr:`split_size`.
If :attr:`split_size_or_sections` is a list, then :attr:`tensor` will be split
into ``len(split_size_or_sections)`` chunks with sizes in :attr:`dim` according
to :attr:`split_size_or_sections`.
Arguments:
tensor (Tensor): tensor to split.
split_size_or_sections (int) or (list(int)): size of a single chunk or
list of sizes for each chunk
dim (int): dimension along which to split the tensor.
"""
# Overwriting reason:
# This dispatches to two ATen functions depending on the type of
# split_size_or_sections. The branching code is in tensor.py, which we
# call here.
return tensor.split(split_size_or_sections, dim)
def btrifact(A, info=None, pivot=True):
r"""Batch LU factorization.
Returns a tuple containing the LU factorization and pivots. Pivoting is done if
:attr:`pivot` is set.
The optional argument :attr:`info` stores information if the factorization
succeeded for each minibatch example. The :attr:`info` is provided as an
`IntTensor`, its values will be filled from dgetrf and a non-zero value
indicates an error occurred. Specifically, the values are from cublas if cuda is
being used, otherwise LAPACK.
.. warning::
The :attr:`info` argument is deprecated in favor of :meth:`torch.btrifact_with_info`.
Arguments:
A (Tensor): the tensor to factor
info (IntTensor, optional): (deprecated) an `IntTensor` to store values
indicating whether factorization succeeds
pivot (bool, optional): controls whether pivoting is done
Returns:
A tuple containing factorization and pivots.
Example::
>>> A = torch.randn(2, 3, 3)
>>> A_LU, pivots = torch.btrifact(A)
>>> A_LU
tensor([[[ 1.3506, 2.5558, -0.0816],
[ 0.1684, 1.1551, 0.1940],
[ 0.1193, 0.6189, -0.5497]],
[[ 0.4526, 1.2526, -0.3285],
[-0.7988, 0.7175, -0.9701],
[ 0.2634, -0.9255, -0.3459]]])
>>> pivots
tensor([[ 3, 3, 3],
[ 3, 3, 3]], dtype=torch.int32)
"""
# Overwriting reason:
# `info` is being deprecated in favor of `btrifact_with_info`. This warning
# is in tensor.py, which we call here.
return A.btrifact(info, pivot)
def btriunpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True):
r"""Unpacks the data and pivots from a batched LU factorization (btrifact) of a tensor.
Returns a tuple of tensors as ``(the pivots, the L tensor, the U tensor)``.
Arguments:
LU_data (Tensor): the packed LU factorization data
LU_pivots (Tensor): the packed LU factorization pivots
unpack_data (bool): flag indicating if the data should be unpacked
unpack_pivots (bool): flag indicating if the pivots should be unpacked
Example::
>>> A = torch.randn(2, 3, 3)
>>> A_LU, pivots = A.btrifact()
>>> P, A_L, A_U = torch.btriunpack(A_LU, pivots)
>>>
>>> # can recover A from factorization
>>> A_ = torch.bmm(P, torch.bmm(A_L, A_U))
"""
nBatch, sz, _ = LU_data.size()
if unpack_data:
I_U = torch.triu(torch.ones(sz, sz)).type_as(LU_data).byte().unsqueeze(0).expand(nBatch, sz, sz)
I_L = 1 - I_U
L = LU_data.new(LU_data.size()).zero_()
U = LU_data.new(LU_data.size()).zero_()
I_diag = torch.eye(sz).type_as(LU_data).byte().unsqueeze(0).expand(nBatch, sz, sz)
L[I_diag] = 1.0
L[I_L] = LU_data[I_L]
U[I_U] = LU_data[I_U]
else:
L = U = None
if unpack_pivots:
P = torch.eye(sz).type_as(LU_data).unsqueeze(0).repeat(nBatch, 1, 1)
for i in range(nBatch):
for j in range(sz):
k = int(LU_pivots[i, j] - 1)
t = P[i, :, j].clone()
P[i, :, j] = P[i, :, k]
P[i, :, k] = t
else:
P = None
return P, L, U
def einsum(equation, *operands):
r"""einsum(equation, *operands) -> Tensor
This function provides a way of computing multilinear expressions (i.e. sums of products) using the
Einstein summation convention.
Args:
equation (string): The equation is given in terms of lower case letters (indices) to be associated
with each dimension of the operands and result. The left hand side lists the operands
dimensions, separated by commas. There should be one index letter per tensor dimension.
The right hand side follows after `->` and gives the indices for the output.
If the `->` and right hand side are omitted, it implicitly defined as the alphabetically
sorted list of all indices appearing exactly once in the left hand side.
The indices not apprearing in the output are summed over after multiplying the operands
entries.
If an index appears several times for the same operand, a diagonal is taken.
Ellipses `...` represent a fixed number of dimensions. If the right hand side is inferred,
the ellipsis dimensions are at the beginning of the output.
operands (list of Tensors): The operands to compute the Einstein sum of.
Note that the operands are passed as a list, not as individual arguments.
Examples::
>>> x = torch.randn(5)
>>> y = torch.randn(4)
>>> torch.einsum('i,j->ij', x, y) # outer product
tensor([[-0.0570, -0.0286, -0.0231, 0.0197],
[ 1.2616, 0.6335, 0.5113, -0.4351],
[ 1.4452, 0.7257, 0.5857, -0.4984],
[-0.4647, -0.2333, -0.1883, 0.1603],
[-1.1130, -0.5588, -0.4510, 0.3838]])
>>> A = torch.randn(3,5,4)
>>> l = torch.randn(2,5)
>>> r = torch.randn(2,4)
>>> torch.einsum('bn,anm,bm->ba', l, A, r) # compare torch.nn.functional.bilinear
tensor([[-0.3430, -5.2405, 0.4494],
[ 0.3311, 5.5201, -3.0356]])
>>> As = torch.randn(3,2,5)
>>> Bs = torch.randn(3,5,4)
>>> torch.einsum('bij,bjk->bik', As, Bs) # batch matrix multiplication
tensor([[[-1.0564, -1.5904, 3.2023, 3.1271],
[-1.6706, -0.8097, -0.8025, -2.1183]],
[[ 4.2239, 0.3107, -0.5756, -0.2354],
[-1.4558, -0.3460, 1.5087, -0.8530]],
[[ 2.8153, 1.8787, -4.3839, -1.2112],
[ 0.3728, -2.1131, 0.0921, 0.8305]]])
>>> A = torch.randn(3, 3)
>>> torch.einsum('ii->i', A) # diagonal
tensor([-0.7825, 0.8291, -0.1936])
>>> A = torch.randn(4, 3, 3)
>>> torch.einsum('...ii->...i', A) # batch diagonal
tensor([[-1.0864, 0.7292, 0.0569],
[-0.9725, -1.0270, 0.6493],
[ 0.5832, -1.1716, -1.5084],
[ 0.4041, -1.1690, 0.8570]])
>>> A = torch.randn(2, 3, 4, 5)
>>> torch.einsum('...ij->...ji', A).shape # batch permute
torch.Size([2, 3, 5, 4])
"""
if len(operands) == 1 and isinstance(operands[0], (list, tuple)):
# the old interface of passing the operands as one list argument
operands = operands[0]
return torch._C._VariableFunctions.einsum(equation, operands)
def isfinite(tensor):
r"""Returns a new tensor with boolean elements representing if each element is `Finite` or not.
Arguments:
tensor (Tensor): A tensor to check
Returns:
Tensor: A ``torch.ByteTensor`` containing a 1 at each location of finite elements and 0 otherwise
Example::
>>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
tensor([ 1, 0, 1, 0, 0], dtype=torch.uint8)
"""
if not isinstance(tensor, torch.Tensor):
raise ValueError("The argument is not a tensor", str(tensor))
# Support int input, nan and inf are concepts in floating point numbers.
# Numpy uses type 'Object' when the int overflows long, but we don't
# have a similar concept. It's safe to assume any created LongTensor doesn't
# overflow and it's finite.
if not tensor.is_floating_point():
return torch.ones_like(tensor, dtype=torch.uint8)
return (tensor == tensor) & (tensor.abs() != inf)
def isinf(tensor):
r"""Returns a new tensor with boolean elements representing if each element is `+/-INF` or not.
Arguments:
tensor (Tensor): A tensor to check
Returns:
Tensor: A ``torch.ByteTensor`` containing a 1 at each location of `+/-INF` elements and 0 otherwise
Example::
>>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')]))
tensor([ 0, 1, 0, 1, 0], dtype=torch.uint8)
"""
if not isinstance(tensor, torch.Tensor):
raise ValueError("The argument is not a tensor", str(tensor))
return tensor.abs() == inf
def meshgrid(*tensors, **kwargs):
r"""Take :math:`N` tensors, each of which can be either scalar or 1-dimensional
vector, and create :math:`N` N-dimensional grids, where the :math:`i`th grid is defined by
expanding the :math:`i`th input over dimensions defined by other inputs.
Args:
tensors (list of Tensor): list of scalars or 1 dimensional tensors. Scalars will be
treated as tensors of size :math:`(1,)` automatically
Returns:
seq (sequence of Tensors): If the input has :math:`k` tensors of size
:math:`(N_1,), (N_2,), \ldots , (N_k,)`, then the output would also has :math:`k` tensors,
where all tensors are of size :math:`(N_1, N_2, \ldots , N_k)`.
Example::
>>> x = torch.tensor([1, 2, 3])
>>> y = torch.tensor([4, 5, 6])
>>> grid_x, grid_y = torch.meshgrid(x, y)
>>> grid_x
tensor([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
>>> grid_y
tensor([[4, 5, 6],
[4, 5, 6],
[4, 5, 6]])
"""
if kwargs:
raise TypeError("meshgrid() got an unexpected keyword argument '%s'" % (list(kwargs)[0],))
if len(tensors) == 1 and isinstance(tensors[0], (list, tuple)):
# the old interface of passing the operands as one list argument
tensors = tensors[0]
return torch._C._VariableFunctions.meshgrid(tensors)
def stft(input, n_fft, hop_length=None, win_length=None, window=None,
center=True, pad_mode='reflect', normalized=False, onesided=True):
r"""Short-time Fourier transform (STFT).
Ignoring the optional batch dimension, this method computes the following
expression:
.. math::
X[m, \omega] = \sum_{k = 0}^{\text{win\_length}}%
\text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\ %
\exp\left(- j \frac{2 \pi \cdot \omega k}{\text{win\_length}}\right),
where :math:`m` is the index of the sliding window, and :math:`\omega` is
the frequency that :math:`0 \leq \omega < \text{n\_fft}`. When
:attr:`onesided` is the default value ``True``,
* :attr:`input` must be either a 1-D time sequenceor 2-D a batch of time
sequences.
* If :attr:`hop_length` is ``None`` (default), it is treated as equal to
``floor(n_fft / 4)``.
* If :attr:`win_length` is ``None`` (default), it is treated as equal to
:attr:`n_fft`.
* :attr:`window` can be a 1-D tensor of size :attr:`win_length`, e.g., from
:meth:`torch.hann_window`. If :attr:`window` is ``None`` (default), it is
treated as if having :math:`1` everywhere in the window. If
:math:`\text{win\_length} < \text{n\_fft}`, :attr:`window` will be padded on
both sides to length :attr:`n_fft` before being applied.
* If :attr:`center` is ``True`` (default), :attr:`input` will be padded on
both sides so that the :math:`t`-th frame is centered at time
:math:`t \times \text{hop\_length}`. Otherwise, the :math:`t`-th frame
begins at time :math:`t \times \text{hop\_length}`.
* :attr:`pad_mode` determines the padding method used on :attr:`input` when
:attr:`center` is ``True``. See :meth:`torch.nn.functional.pad` for
all available options. Default is ``"reflect"``.
* If :attr:`onesided` is ``True`` (default), only values for :math:`\omega`
in :math:`\left[0, 1, 2, \dots, \left\lfloor \frac{\text{n\_fft}}{2} \right\rfloor + 1\right]`
are returned because the real-to-complex Fourier transform satisfies the
conjugate symmetry, i.e., :math:`X[m, \omega] = X[m, \text{n\_fft} - \omega]^*`.
* If :attr:`normalized` is ``True`` (default is ``False``), the function
returns the normalized STFT results, i.e., multiplied by :math:`(\text{frame\_length})^{-0.5}`.
Returns the real and the imaginary parts together as one tensor of size
:math:`(* \times N \times T \times 2)`, where :math:`*` is the optional
batch size of :attr:`input`, :math:`N` is the number of frequencies where
STFT is applied, :math:`T` is the total number of frames used, and each pair
in the last dimension represents a complex number as the real part and the
imaginary part.
.. warning::
This function changed signature at version 0.4.1. Calling with the
previous signature may cause error or return incorrect result.
Arguments:
input (Tensor): the input tensor
n_fft (int, optional): size of Fourier transform
hop_length (int): the distance between neighboring sliding window
frames. Default: ``None`` (treated as equal to ``floor(n_fft / 4)``)
win_length (int): the size of window frame and STFT filter.
Default: ``None`` (treated as equal to :attr:`n_fft`)
window (Tensor, optional): the optional window function.
Default: ``None`` (treated as window of all :math:`1` s)
center (bool, optional): whether to pad :attr:`input` on both sides so
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
Default: ``True``
pad_mode (string, optional): controls the padding method used when
:attr:`center` is ``True``. Default: ``"reflect"``
normalized (bool, optional): controls whether to return the normalized STFT results
Default: ``False``
onesided (bool, optional): controls whether to return half of results to
avoid redundancy Default: ``True``
Returns:
Tensor: A tensor containing the STFT result with shape described above
"""
# TODO: after having proper ways to map Python strings to ATen Enum, move
# this and F.pad to ATen.
if center:
signal_dim = input.dim()
extended_shape = [1] * (3 - signal_dim) + list(input.size())
pad = int(n_fft // 2)
input = F.pad(input.view(extended_shape), (pad, pad), pad_mode)
input = input.view(input.shape[-signal_dim:])
return torch._C._VariableFunctions.stft(input, n_fft, hop_length, win_length, window, normalized, onesided)
def isnan(tensor):
r"""Returns a new tensor with boolean elements representing if each element is `NaN` or not.
Arguments:
tensor (Tensor): A tensor to check
Returns:
Tensor: A ``torch.ByteTensor`` containing a 1 at each location of `NaN` elements.
Example::
>>> torch.isnan(torch.tensor([1, float('nan'), 2]))
tensor([ 0, 1, 0], dtype=torch.uint8)
"""
if not isinstance(tensor, torch.Tensor):
raise ValueError("The argument is not a tensor", str(tensor))
return tensor != tensor
def unique(input, sorted=False, return_inverse=False, dim=None):
r"""Returns the unique scalar elements of the input tensor as a 1-D tensor.
Arguments:
input (Tensor): the input tensor
sorted (bool): Whether to sort the unique elements in ascending order
before returning as output.
return_inverse (bool): Whether to also return the indices for where
elements in the original input ended up in the returned unique list.
dim (int): the dimension to apply unique. If ``None``, the unique of the
flattened input is returned. default: ``None``
Returns:
(Tensor, Tensor (optional)): A tensor or a tuple of tensors containing
- **output** (*Tensor*): the output list of unique scalar elements.
- **inverse_indices** (*Tensor*): (optional) if
:attr:`return_inverse` is True, there will be a
2nd returned tensor (same shape as input) representing the indices
for where elements in the original input map to in the output;
otherwise, this function will only return a single tensor.
Example::
>>> output = torch.unique(torch.tensor([1, 3, 2, 3], dtype=torch.long))
>>> output
tensor([ 2, 3, 1])
>>> output, inverse_indices = torch.unique(
torch.tensor([1, 3, 2, 3], dtype=torch.long), sorted=True, return_inverse=True)
>>> output
tensor([ 1, 2, 3])
>>> inverse_indices
tensor([ 0, 2, 1, 2])
>>> output, inverse_indices = torch.unique(
torch.tensor([[1, 3], [2, 3]], dtype=torch.long), sorted=True, return_inverse=True)
>>> output
tensor([ 1, 2, 3])
>>> inverse_indices
tensor([[ 0, 2],
[ 1, 2]])
"""
if dim is not None:
output, inverse_indices = torch._unique_dim(
input,
dim,
sorted=sorted,
return_inverse=return_inverse
)
else:
output, inverse_indices = torch._unique(
input,
sorted=sorted,
return_inverse=return_inverse,
)
if return_inverse:
return output, inverse_indices
else:
return output
def argmax(input, dim=None, keepdim=False):
r"""Returns the indices of the maximum values of a tensor across a dimension.
This is the second value returned by :meth:`torch.max`. See its
documentation for the exact semantics of this method.
Args:
input (Tensor): the input tensor
dim (int): the dimension to reduce. If ``None``, the argmax of the
flattened input is returned.
keepdim (bool): whether the output tensors have :attr:`dim`
retained or not. Ignored if ``dim=None``.
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 1.3398, 0.2663, -0.2686, 0.2450],
[-0.7401, -0.8805, -0.3402, -1.1936],
[ 0.4907, -1.3948, -1.0691, -0.3132],
[-1.6092, 0.5419, -0.2993, 0.3195]])
>>> torch.argmax(a, dim=1)
tensor([ 0, 2, 0, 1])
"""
if dim is None:
return torch._argmax(input.contiguous().view(-1), dim=0, keepdim=False)
return torch._argmax(input, dim, keepdim)
def argmin(input, dim=None, keepdim=False):
r"""Returns the indices of the minimum values of a tensor across a dimension.
This is the second value returned by :meth:`torch.min`. See its
documentation for the exact semantics of this method.
Args:
input (Tensor): the input tensor
dim (int): the dimension to reduce. If ``None``, the argmin of the
flattened input is returned.
keepdim (bool): whether the output tensors have :attr:`dim`
retained or not. Ignored if ``dim=None``.
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.1139, 0.2254, -0.1381, 0.3687],
[ 1.0100, -1.1975, -0.0102, -0.4732],
[-0.9240, 0.1207, -0.7506, -1.0213],
[ 1.7809, -1.2960, 0.9384, 0.1438]])
>>> torch.argmin(a, dim=1)
tensor([ 2, 1, 3, 1])
"""
if dim is None:
return torch._argmin(input.contiguous().view(-1), dim=0, keepdim=False)
return torch._argmin(input, dim, keepdim)
def tensordot(a, b, dims=2):
r"""Returns a contraction of a and b over multiple dimensions.
:attr:`tensordot` implements a generalizes the matrix product.
Args:
a (Tensor): Left tensor to contract
b (Tensor): Right tensor to contract
dims (int or tuple of two lists of integers): number of dimensions to
contract or explicit lists of dimensions for :attr:`a` and
:attr:`b` respectively
When called with an integer argument :attr:`dims` = :math:`d`, and the number of
dimensions of :attr:`a` and :attr:`b` is :math:`m` and :math:`n`, respectively,
it computes
.. math::
r_{i_0,...,i_{m-d}, i_d,...,i_n}
= \sum_{k_0,...,k_{d-1}} a_{i_0,...,i_{m-d},k_0,...,k_{d-1}} \times b_{k_0,...,k_{d-1}, i_d,...,i_n}.
When called with :attr:`dims` of the list form, the given dimensions will be contracted
in place of the last :math:`d` of :attr:`a` and the first :math:`d` of :math:`b`. The sizes
in these dimensions must match, but :attr:`tensordot` will deal with broadcasted
dimensions.
Examples::
>>> a = torch.arange(60.).reshape(3, 4, 5)
>>> b = torch.arange(24.).reshape(4, 3, 2)
>>> torch.tensordot(a, b, dims=([1, 0], [0, 1]))
tensor([[4400., 4730.],
[4532., 4874.],
[4664., 5018.],
[4796., 5162.],
[4928., 5306.]])
>>> a = torch.randn(3, 4, 5, device='cuda')
>>> b = torch.randn(4, 5, 6, device='cuda')
>>> c = torch.tensordot(a, b, dims=2).cpu()
tensor([[ 8.3504, -2.5436, 6.2922, 2.7556, -1.0732, 3.2741],
[ 3.3161, 0.0704, 5.0187, -0.4079, -4.3126, 4.8744],
[ 0.8223, 3.9445, 3.2168, -0.2400, 3.4117, 1.7780]])
"""
if isinstance(dims, (list, tuple)) or \
(isinstance(dims, torch.Tensor) and dims.numel() > 1):
dims_a, dims_b = dims
else:
if isinstance(dims, torch.Tensor):
dims = dims.item()
dims_a = list(range(-dims, 0))
dims_b = list(range(dims))
return torch._C._VariableFunctions.tensordot(a, b, dims_a, dims_b)
def argsort(input, dim=None, descending=False):
r"""Returns the indices that sort a tensor along a given dimension in ascending
order by value.
This is the second value returned by :meth:`torch.sort`. See its documentation
for the exact semantics of this method.
Args:
input (Tensor): the input tensor
dim (int, optional): the dimension to sort along
descending (bool, optional): controls the sorting order (ascending or descending)
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0785, 1.5267, -0.8521, 0.4065],
[ 0.1598, 0.0788, -0.0745, -1.2700],
[ 1.2208, 1.0722, -0.7064, 1.2564],
[ 0.0669, -0.2318, -0.8229, -0.9280]])
>>> torch.argsort(a, dim=1)
tensor([[2, 0, 3, 1],
[3, 2, 1, 0],
[2, 1, 0, 3],
[3, 2, 1, 0]])
"""
if dim is None:
return torch.sort(input, -1, descending)[1]
return torch.sort(input, dim, descending)[1]
def norm(input, p="fro", dim=None, keepdim=False, out=None):
r"""Returns the matrix norm or vector norm of a given tensor.
Args:
input (Tensor): the input tensor
p (int, float, inf, -inf, 'fro', 'nuc', optional): the order of norm. Default: ``'fro'``
The following norms can be calculated:
===== ============================ ==========================
ord matrix norm vector norm
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm --
'nuc' nuclear norm --
Other as vec norm when dim is None sum(abs(x)**ord)**(1./ord)
===== ============================ ==========================
dim (int, 2-tuple of ints, 2-list of ints, optional): If it is an int,
vector norm will be calculated, if it is 2-tuple of ints, matrix norm
will be calculated. If the value is None, matrix norm will be calculated
when the input tensor only has two dimensions, vector norm will be
calculated when the input tensor only has one dimension. If the input
tensor has more than two dimensions, the vector norm will be applied to
last dimension.
keepdim (bool, optional): whether the output tensors have :attr:`dim`
retained or not. Ignored if :attr:`dim` = ``None`` and
:attr:`out` = ``None``. Default: ``False``
out (Tensor, optional): the output tensor. Ignored if
:attr:`dim` = ``None`` and :attr:`out` = ``None``.
Example::
>>> import torch
>>> a = torch.arange(9, dtype= torch.float) - 4
>>> b = a.reshape((3, 3))
>>> torch.norm(a)
tensor(7.7460)
>>> torch.norm(b)
tensor(7.7460)
>>> torch.norm(a, float('inf'))
tensor(4.)
>>> torch.norm(b, float('inf'))
tensor([4., 3., 4.])
>>> c = torch.tensor([[ 1, 2, 3],[-1, 1, 4]] , dtype= torch.float)
>>> torch.norm(c, dim=0)
tensor([1.4142, 2.2361, 5.0000])
>>> torch.norm(c, dim=1)
tensor([3.7417, 4.2426])
>>> torch.norm(c, p=1, dim=1)
tensor([6., 6.])
>>> d = torch.arange(8, dtype= torch.float).reshape(2,2,2)
>>> torch.norm(d, dim=(1,2))
tensor([ 3.7417, 11.2250])
>>> torch.norm(d[0, :, :]), torch.norm(d[1, :, :])
(tensor(3.7417), tensor(11.2250))
"""
ndim = input.dim()
# catch default case
if dim is None and out is None:
if p == "fro":
return torch._C._VariableFunctions.frobenius_norm(input)
elif p != "nuc":
return torch._C._VariableFunctions.norm(input, p)
if p == "fro":
if dim is None:
dim = tuple(range(ndim))
if out is None:
return torch._C._VariableFunctions.frobenius_norm(input, dim, keepdim=keepdim)
return torch._C._VariableFunctions.frobenius_norm(input, dim, keepdim=keepdim, out=out)
elif p == "nuc":
if out is None:
torch._C._VariableFunctions.nuclear_norm(input, keepdim=keepdim)
return torch._C._VariableFunctions.nuclear_norm(input, keepdim=keepdim, out=out)
else:
if out is None:
return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim)
return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim, out=out)
def chain_matmul(*matrices):
r"""Returns the matrix product of the :math:`N` 2-D tensors. This product is efficiently computed
using the matrix chain order algorithm which selects the order in which incurs the lowest cost in terms
of arithmetic operations (`[CLRS]`_). Note that since this is a function to compute the product, :math:`N`
needs to be greater than or equal to 2; if equal to 2 then a trivial matrix-matrix product is returned.
If :math:`N` is 1, then this is a no-op - the original matrix is returned as is.
Args:
matrices (Tensors...): a sequence of 2 or more 2-D tensors whose product is to be determined.
Returns:
Tensor: if the :math:`i^{th}` tensor was of dimensions :math:`p_{i} \times p_{i + 1}`, then the product
would be of dimensions :math:`p_{1} \times p_{N + 1}`.
Example::
>>> a = torch.randn(3, 4)
>>> b = torch.randn(4, 5)
>>> c = torch.randn(5, 6)
>>> d = torch.randn(6, 7)
>>> torch.chain_matmul(a, b, c, d)
tensor([[ -2.3375, -3.9790, -4.1119, -6.6577, 9.5609, -11.5095, -3.2614],
[ 21.4038, 3.3378, -8.4982, -5.2457, -10.2561, -2.4684, 2.7163],
[ -0.9647, -5.8917, -2.3213, -5.2284, 12.8615, -12.2816, -2.5095]])
.. _`[CLRS]`: https://mitpress.mit.edu/books/introduction-algorithms-third-edition
"""
return torch._C._VariableFunctions.chain_matmul(matrices)