From 71d1ce67a96b7c82ca08feb9fa24a970a30471c1 Mon Sep 17 00:00:00 2001 From: Matheus Cordeiro Date: Mon, 16 Dec 2024 21:37:23 -0300 Subject: [PATCH] Little Modifications in the documentation webpage --- docs/fast_wave.html | 2 +- src/fast_wave/__init__.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/fast_wave.html b/docs/fast_wave.html index 655654a..dd23a2a 100644 --- a/docs/fast_wave.html +++ b/docs/fast_wave.html @@ -439,7 +439,7 @@

📬 Contact

103 104 <br> 105 -106 The energy eigenfunction for an energy state $\mathbf{n}$ is the wavefunction for an energy state $\mathbf{n}$ of a Quantum Harmonic Oscillator. From this definition, we can then represent the wave function $\Psi(x,t)$ as a series expansion of its family of energy eigenfunctions $\{\psi_{n}(x)\}$ [[5](#references)]: +106 The energy eigenfunction for an energy state $\mathbf{n}$ is the wavefunction for an energy state $\mathbf{n}$ of a Quantum Harmonic Oscillator. From this definition, we can then represent the wave function $\Psi(x,t)$ as a series expansion of its family of energy eigenfunctions $\\{\psi_{n}(x)\\}$ [[5](#references)]: 107 108 $$ 109 \Psi(y,t) = \sum_{n=0}^{\infty} c_{n} \, \psi_{n}(y) \, e^{-\mathbf{i}E_{n}t/\hbar} \quad \mathbf{(6)} diff --git a/src/fast_wave/__init__.py b/src/fast_wave/__init__.py index 8d7e7f0..788099b 100644 --- a/src/fast_wave/__init__.py +++ b/src/fast_wave/__init__.py @@ -104,7 +104,7 @@
- The energy eigenfunction for an energy state $\mathbf{n}$ is the wavefunction for an energy state $\mathbf{n}$ of a Quantum Harmonic Oscillator. From this definition, we can then represent the wave function $\Psi(x,t)$ as a series expansion of its family of energy eigenfunctions $\{\psi_{n}(x)\}$ [[5](#references)]: + The energy eigenfunction for an energy state $\mathbf{n}$ is the wavefunction for an energy state $\mathbf{n}$ of a Quantum Harmonic Oscillator. From this definition, we can then represent the wave function $\Psi(x,t)$ as a series expansion of its family of energy eigenfunctions $\\{\psi_{n}(x)\\}$ [[5](#references)]: $$ \Psi(y,t) = \sum_{n=0}^{\infty} c_{n} \, \psi_{n}(y) \, e^{-\mathbf{i}E_{n}t/\hbar} \quad \mathbf{(6)}