From bff869de7e63b245990e698fda7f898d6fbdddc6 Mon Sep 17 00:00:00 2001 From: Matheus Gomes Cordeiro Date: Mon, 18 Nov 2024 14:18:31 -0300 Subject: [PATCH] Criado usando o Colab --- examples/speed_tests_numba_and_cython.ipynb | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/examples/speed_tests_numba_and_cython.ipynb b/examples/speed_tests_numba_and_cython.ipynb index 3f66534..05c3e20 100644 --- a/examples/speed_tests_numba_and_cython.ipynb +++ b/examples/speed_tests_numba_and_cython.ipynb @@ -179,10 +179,10 @@ "## Performance Comparison: Mr Mustard vs. Fast Wave for Single Fock & Multiple Position Wavefunctions\n", "---\n", "$$$$\n", - "**Explanation:** This analysis evaluates the computational efficiency of three approaches—Mr Mustard, Fast Wave (Numba), and Fast Wave (Cython)—for calculating the squared amplitude $|\\psi_n(X_{m})|^2$ of a Single Fock & Multiple Position Wavefunction $\\psi_n(X_{m})$. The Single Fock & Multiple Position wavefunction, $\\psi_{i}(X)$, maps an array of position inputs $X_{m}$ to an array of corresponding outputs:\n", + "**Explanation:** This analysis evaluates the computational efficiency of three approaches—Mr Mustard, Fast Wave (Numba), and Fast Wave (Cython) — for calculating the squared amplitude $|\\psi_n(X_{m})|^2$ of a Single Fock & Multiple Position Wavefunction $\\psi_n(X_{m})$. The Single Fock & Multiple Position wavefunction, $\\psi_{i}(X_{m})$, maps an array of position inputs $X_{m}$ to an array of corresponding outputs, this implies that:\n", "\n", "$$$$\n", - "$$[\\psi_{i}(x_{1}), \\psi_{i}(x_{2}), ..., \\psi_{i}(x_{m})]_{\\, m}$$\n", + "$$\\psi_{i}(X_{m}) = [\\psi_{i}(x_{1}), \\psi_{i}(x_{2}), ..., \\psi_{i}(x_{m})]_{\\, m}$$\n", "$$$$\n", "\n", "Execution times for each method are plotted to facilitate comparison.\n", @@ -267,14 +267,14 @@ "## Performance Comparison: Mr Mustard vs. Fast Wave for Multiple Fock & Multiple Position Wavefunctions\n", "---\n", "$$$$\n", - "**Explanation:** This analysis evaluates the computational efficiency of three approaches—Mr Mustard, Fast Wave (Numba), and Fast Wave (Cython)—for calculating of a Multiple Fock & Multiple Position Wavefunction $\\psi_{\\,0\\rightarrow n}\\big(X_{m}\\big)$. The Single Fock & Multiple Position wavefunction, $\\psi_{\\,0\\rightarrow i}\\big(X_{m}\\big)$, maps an array of position inputs $X_{m}$ to an matrix of corresponding outputs:\n", + "**Explanation:** This analysis evaluates the computational efficiency of three approaches—Mr Mustard, Fast Wave (Numba), and Fast Wave (Cython) — for calculating of a Multiple Fock & Multiple Position Wavefunction $\\psi_{\\,0\\rightarrow n}\\big(X_{m}\\big)$. The Single Fock & Multiple Position wavefunction, $\\psi_{\\,0\\rightarrow i}\\big(X_{m}\\big)$, maps an array of position inputs $X_{m}$ to an matrix of corresponding outputs, this implies that:\n", "\n", "$$$$\n", - "$$ \\begin{bmatrix}\n", + "$$ \\psi_{\\,0\\rightarrow i}\\big(X_{m}\\big) = \\begin{bmatrix}\n", " \\psi_{0}(x_{1}) & \\cdots & \\psi_{0}(x_{m}) \\\\\n", " \\vdots & \\ddots & \\vdots \\\\\n", - " \\psi_{n}(x_{1}) & \\cdots & \\psi_{n}(x_{m}) \\\\\n", - " \\end{bmatrix}_{(n+1) \\, \\times \\, m}$$\n", + " \\psi_{i}(x_{1}) & \\cdots & \\psi_{i}(x_{m}) \\\\\n", + " \\end{bmatrix}_{(i+1) \\, \\times \\, m}$$\n", "$$$$\n", "...\n", "$$$$"