-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #21 from for-ai/create-annotation-check
Create annotation check
- Loading branch information
Showing
2 changed files
with
110 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -12,4 +12,5 @@ python-dotenv | |
sentence-splitter==1.4 | ||
pandas | ||
huggingface_hub | ||
tabulate | ||
tabulate | ||
numpy |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
import argparse | ||
import json | ||
import logging | ||
import sys | ||
from pathlib import Path | ||
from typing import List | ||
|
||
import numpy as np | ||
import pandas as pd | ||
from datasets import load_dataset | ||
from huggingface_hub import snapshot_download | ||
|
||
logging.basicConfig(level=logging.INFO) | ||
|
||
|
||
def get_args(): | ||
# fmt: off | ||
parser = argparse.ArgumentParser(description="Create annotation CSV for a given language.") | ||
parser.add_argument("--output_dir", type=Path, required=True, help="Directory to save the annotation CSV files.") | ||
parser.add_argument("--langs", nargs="*", required=True, type=str, help="Languages to create annotation files on.") | ||
parser.add_argument("--pred_dataset", type=str, default="aya-rm-multilingual/eval-results", help="HuggingFace dataset containing the results.") | ||
parser.add_argument("--gold_dataset", type=str, default="aya-rm-multilingual/multilingual-reward-bench", help="HuggingFace dataset containing the gold labels.") | ||
parser.add_argument("--use_model", type=str, default=None, help="If set, will use model outputs as basis for sampling. Will sample equal number of wins/losses/ties. Only works for Generative RMs for now.") | ||
parser.add_argument("--sample_size", type=int, default=None, help="Total number of instances to sample.") | ||
# fmt: on | ||
return parser.parse_args() | ||
|
||
|
||
def main(): | ||
args = get_args() | ||
pred_dir = Path(snapshot_download(args.pred_dataset, repo_type="dataset")) | ||
lang_folders = [d for d in pred_dir.iterdir() if d.is_dir()] | ||
|
||
# for lang in args.langs: | ||
for lang_dir in lang_folders: | ||
if lang_dir.name in args.langs: | ||
lang = lang_dir.name | ||
gold_dataset = load_dataset(args.gold_dataset, lang, split="filtered") | ||
annotation_df = gold_dataset.to_pandas() | ||
if args.use_model: | ||
logging.info(f"Will sample based on {args.use_model} results") | ||
scores = get_per_instance_scores(model_name=args.use_model, lang_dir=lang_dir) | ||
annotation_df["scores"] = scores | ||
|
||
if args.sample_size: | ||
logging.info(f"Sampling {args.sample_size} examples") | ||
annotation_df = stratified_sampling(annotation_df, n=args.sample_size, column="scores") | ||
|
||
logging.info(f"Number of annotation tasks: {len(annotation_df)}") | ||
logging.info("Randomly swapping the completions") | ||
swap_mask = np.random.rand(len(annotation_df)) < 0.5 | ||
annotation_df["swapped"] = swap_mask.astype(int) | ||
annotation_df = annotation_df.rename(columns={"chosen": "completion_a", "rejected": "completion_b"}) | ||
|
||
# Save the answer key before swapping and removing some other columns | ||
answer_key_df = annotation_df.copy() | ||
# Start swapping | ||
annotation_df.loc[swap_mask, ["completion_a", "completion_b"]] = annotation_df.loc[ | ||
swap_mask, ["completion_b", "completion_a"] | ||
].values | ||
annotation_df = annotation_df.drop( | ||
columns=["chosen_model", "rejected_model", "subset", "scores", "swapped"] | ||
) | ||
|
||
output_dir = Path(args.output_dir) | ||
output_dir.mkdir(parents=True, exist_ok=True) | ||
answer_key_output = output_dir / f"{lang}-answer_key.csv" | ||
answer_key_df.to_csv(answer_key_output, index=False) | ||
annotation_file_output = output_dir / f"{lang}-annotation.csv" | ||
annotation_df.to_csv(annotation_file_output, index=False) | ||
logging.info(f"Saved answer key and annotation file to {output_dir}") | ||
|
||
|
||
def get_per_instance_scores(model_name: str, lang_dir: Path) -> List[float]: | ||
model_file = [ | ||
file for file in lang_dir.iterdir() if file.suffix == ".json" and model_name.replace("/", "___") in str(file) | ||
] | ||
if len(model_file) == 0: | ||
logging.error(f"Can't find model '{model_name}' in {lang_dir.name} results") | ||
sys.exit(1) | ||
|
||
with open(model_file[0], "r") as f: | ||
results = json.load(f) | ||
|
||
scores = results["scores"]["results"] | ||
return scores | ||
|
||
|
||
def stratified_sampling(df: "pd.DataFrame", n: int, column: str = "scores") -> "pd.DataFrame": | ||
counts = df[column].value_counts() | ||
min_count = counts.min() | ||
num_categories = len(counts) | ||
samples_per_category = min(n // num_categories, min_count) | ||
|
||
# Sample the rows | ||
samples = [] | ||
for score in counts.index: | ||
score_df = df[df[column] == score] | ||
sampled_df = score_df.sample(n=samples_per_category, random_state=42) | ||
samples.append(sampled_df) | ||
|
||
# Concatenate the samples | ||
sampled_df = pd.concat(samples).reset_index(drop=True) | ||
return sampled_df | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |