diff --git a/README.md b/README.md
index f5f0f4e..0018663 100644
--- a/README.md
+++ b/README.md
@@ -1,8 +1,22 @@
-# Aya Expedition: Reward Model Multilingual
+# Expedition Aya: Reward Model Multilingual
-Repository for Aya Expedition Project : Reward Model Multilingual
+In this project, we evaluate reward models on their multilingual capabilities.
+We translated [RewardBench](https://huggingface.co/datasets/allenai/reward-bench) into 23 diverse languages and evaluated several open-source and multilingual LLMs on their chat, safety, and reasoning capabilities.
+This project is part of [Cohere for AI's Expedition Aya 2024](https://sites.google.com/cohere.com/expedition-aya/home), a 6-week open build challenge.
-Project Docs: [docs](https://docs.google.com/document/d/11l7Mb60JMRpdJpp9-B7VjWOF4FshBdjzY0FDOTq9sMk/edit?usp=sharing)
+
+🤗 Dataset
+|
+💬 Presentation
+|
+📚 Documentation
+|
+📄 Paper (coming soon!)
+
+
+## Team Members
+
+The team is composed of Srishti Gureja (@srishti-git1110), Shayekh Bin Islam, (@ShayekhBinIslam), Rishabh Maheshwary (@RishabhMaheshwary), Drishti Sushma (@DrishtiShrrrma), Gusti Winata (@sanggusti), and Lj Miranda (@ljvmiranda921).
## Setup and installation
@@ -18,116 +32,6 @@ pip install -r requirements.txt
Note that the [`rewardbench`](https://pypi.org/project/rewardbench/) package requires Python 3.10 and above.
-## Running experiments
-
-First, you need to set a [HuggingFace token](https://huggingface.co/settings/tokens) as an environment variable (`HF_TOKEN`):
-
-```sh
-export HF_TOKEN=
-```
-
-You can find all runnable experiments in the `scripts` directory.
-Their filename should explicitly tell you their purpose.
-
-### Running translation
-
-We currently use [`facebook/nllb-200-3.3B`](https://huggingface.co/facebook/nllb-200-3.3B) for translation. First install sentence splitter using:
-
-```
-pip install git+https://github.com/mediacloud/sentence-splitter.git
-```
-
-To translate reward bench into [22 Aya languages](https://arxiv.org/abs/2405.15032) run the following:
-
-```
-cd scripts
-bash run_nllb.sh
-```
-
-You can also translate a specifc preference dataset from huggingface to a specifc target language using `scripts/translate_preference_pairs_nllb.py`.
-
-### Getting rewards from a Reward Model (RM) on a HuggingFace dataset
-
-Here, we use the `scripts/run_rewardbench.py` command-line interface and pass a HuggingFace dataset.
-This is useful if the reward model is trained as a Custom classifier (🛠️), Sequence classifier (🔢), or via DPO (🎯).
-For example, if we want to get the reward score of the UltraRM-13b reward model on a preference dataset, we run:
-
-```sh
-python -m scripts.run_rewardbench \
- --model openbmb/UltraRM-13b \
- --chat_template openbmb \
- --dataset_name $DATASET \
- --lang_code $LANG_CODE \
- --split "filtered" \
- --output_dir $OUTDIR \
- --batch_size 8 \
- --trust_remote_code \
- --force_truncation \
- --save_all
-```
-
-The evaluation parameters can be found in the [allenai/reward-bench](https://github.com/allenai/reward-bench/blob/main/scripts/configs/eval_configs.yaml) repository.
-This runs the reward model on the (prompt, chosen, rejected) triples and give us the reward score for each instance.
-The results are saved into a JSON file inside the `$OUTDIR` directory.
-Finally, you can find some experiments in the `experiments/run_rm_evals.sh` script.
-
-### Getting rewards from a Generative RM on a HuggingFace dataset
-
-Here we use `scripts/run_generative.py`, a modified version of the [same script in RewardBench](https://github.com/allenai/reward-bench/blob/main/scripts/run_generative.py) to obtain rewards from a Generative RM (🗨️).
-The only difference is that this script accepts any arbitrary HuggingFace preference dataset (which we plan to conribute upstream later on) instead of just the RewardBench dataset.
-
-For Generative RMs, we prompt a model in a style akin to LLM-as-a-judge, and then parse the output to obtain the preference.
-This can be done for closed-source APIs (e.g., GPT-4, Claude) or open-source LMs (done via vLLM).
-If you're planning to use some closed-source APIs, you also need to set the tokens for each:
-
-```sh
-export OPENAI_API_KEY=
-export CO_API_KEY=
-export ANTHROPIC_API_KEY=
-```
-
-**You can also store all your API keys in a .env file.**
-It will be loaded using the [python-dotenv library](https://github.com/theskumar/python-dotenv).
-Say we want to obtain the preferences of `gpt-4-2024-04-09`:
-
-```sh
-export OPENAI_API_KEY=
-python -m scripts.run_generative \
- --dataset_name $DATASET \
- --model gpt-4-turbo-2024-04-09 \
- --split "filtered" \
- --lang_code $LANG_CODE \
- --output_dir $OUTDIR
-```
-
-You can also run open-source LMs in a generative fashion.
-The inference is then routed through [vLLM](https://github.com/vllm-project/vllm).
-Here's an example using `meta-llama/Meta-Llama-3-70B-Instruct`:
-
-```sh
-python -m scripts/run_generative.py \
- --dataset_name $DATASET \
- --lang_code $LANG_CODE \
- --split "filtered" \
- --model "meta-llama/Meta-Llama-3-70B-Instruct" \
- --num_gpus 4 \
- --output_dir $OUTDIR
-```
-
-To improve prompt output especially on multilingual cases, we recommend passing a tuple to the `--include_languages` parameter.
-The first value should be the language a prompt was written in, and the second value should be the language the assistant should use in its answer.
-
-```diff
-python -m scripts/run_generative.py \
- --dataset_name $DATASET \
- --lang_code deu_Latn \
- --split $SPLIT \
- --model "meta-llama/Meta-Llama-3-70B-Instruct" \
- --num_gpus 4 \
-+ --include_languages German English
- --output_dir $OUTDIR
-```
-
## Testing and Development
This codebase contains minimal tests, mostly we test functions that were added or patched from RewardBench.
diff --git a/docs.md b/docs.md
new file mode 100644
index 0000000..de1fbe0
--- /dev/null
+++ b/docs.md
@@ -0,0 +1,109 @@
+# Running experiments
+
+First, you need to set a [HuggingFace token](https://huggingface.co/settings/tokens) as an environment variable (`HF_TOKEN`):
+
+```sh
+export HF_TOKEN=
+```
+
+You can find all runnable experiments in the `scripts` directory.
+Their filename should explicitly tell you their purpose.
+
+## Running translation
+
+We currently use [`facebook/nllb-200-3.3B`](https://huggingface.co/facebook/nllb-200-3.3B) for translation. First install sentence splitter using:
+
+```
+pip install git+https://github.com/mediacloud/sentence-splitter.git
+```
+
+To translate reward bench into [22 Aya languages](https://arxiv.org/abs/2405.15032) run the following:
+
+```
+cd scripts
+bash run_nllb.sh
+```
+
+You can also translate a specifc preference dataset from huggingface to a specifc target language using `scripts/translate_preference_pairs_nllb.py`.
+
+## Getting rewards from a Reward Model (RM) on a HuggingFace dataset
+
+Here, we use the `scripts/run_rewardbench.py` command-line interface and pass a HuggingFace dataset.
+This is useful if the reward model is trained as a Custom classifier (🛠️), Sequence classifier (🔢), or via DPO (🎯).
+For example, if we want to get the reward score of the UltraRM-13b reward model on a preference dataset, we run:
+
+```sh
+python -m scripts.run_rewardbench \
+ --model openbmb/UltraRM-13b \
+ --chat_template openbmb \
+ --dataset_name $DATASET \
+ --lang_code $LANG_CODE \
+ --split "filtered" \
+ --output_dir $OUTDIR \
+ --batch_size 8 \
+ --trust_remote_code \
+ --force_truncation \
+ --save_all
+```
+
+The evaluation parameters can be found in the [allenai/reward-bench](https://github.com/allenai/reward-bench/blob/main/scripts/configs/eval_configs.yaml) repository.
+This runs the reward model on the (prompt, chosen, rejected) triples and give us the reward score for each instance.
+The results are saved into a JSON file inside the `$OUTDIR` directory.
+Finally, you can find some experiments in the `experiments/run_rm_evals.sh` script.
+
+## Getting rewards from a Generative RM on a HuggingFace dataset
+
+Here we use `scripts/run_generative.py`, a modified version of the [same script in RewardBench](https://github.com/allenai/reward-bench/blob/main/scripts/run_generative.py) to obtain rewards from a Generative RM (🗨️).
+The only difference is that this script accepts any arbitrary HuggingFace preference dataset (which we plan to conribute upstream later on) instead of just the RewardBench dataset.
+
+For Generative RMs, we prompt a model in a style akin to LLM-as-a-judge, and then parse the output to obtain the preference.
+This can be done for closed-source APIs (e.g., GPT-4, Claude) or open-source LMs (done via vLLM).
+If you're planning to use some closed-source APIs, you also need to set the tokens for each:
+
+```sh
+export OPENAI_API_KEY=
+export CO_API_KEY=
+export ANTHROPIC_API_KEY=
+```
+
+**You can also store all your API keys in a .env file.**
+It will be loaded using the [python-dotenv library](https://github.com/theskumar/python-dotenv).
+Say we want to obtain the preferences of `gpt-4-2024-04-09`:
+
+```sh
+export OPENAI_API_KEY=
+python -m scripts.run_generative \
+ --dataset_name $DATASET \
+ --model gpt-4-turbo-2024-04-09 \
+ --split "filtered" \
+ --lang_code $LANG_CODE \
+ --output_dir $OUTDIR
+```
+
+You can also run open-source LMs in a generative fashion.
+The inference is then routed through [vLLM](https://github.com/vllm-project/vllm).
+Here's an example using `meta-llama/Meta-Llama-3-70B-Instruct`:
+
+```sh
+python -m scripts/run_generative.py \
+ --dataset_name $DATASET \
+ --lang_code $LANG_CODE \
+ --split "filtered" \
+ --model "meta-llama/Meta-Llama-3-70B-Instruct" \
+ --num_gpus 4 \
+ --output_dir $OUTDIR
+```
+
+To improve prompt output especially on multilingual cases, we recommend passing a tuple to the `--include_languages` parameter.
+The first value should be the language a prompt was written in, and the second value should be the language the assistant should use in its answer.
+
+```diff
+python -m scripts/run_generative.py \
+ --dataset_name $DATASET \
+ --lang_code deu_Latn \
+ --split $SPLIT \
+ --model "meta-llama/Meta-Llama-3-70B-Instruct" \
+ --num_gpus 4 \
++ --include_languages German English
+ --output_dir $OUTDIR
+```