Skip to content

Commit

Permalink
Add code for MAPLE and for inner-annotator agreement (#46)
Browse files Browse the repository at this point in the history
Co-authored-by: Shayekh Bin Islam <shikh.bin.islam@gmail.com>
  • Loading branch information
ljvmiranda921 and ShayekhBinIslam authored Oct 12, 2024
1 parent 621fc66 commit a8222bb
Show file tree
Hide file tree
Showing 2 changed files with 193 additions and 0 deletions.
92 changes: 92 additions & 0 deletions analysis/avg_agreement_final.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

data = {
"meta-llama/Meta-Llama-3.1-8B-Instruct": [
0.3533086666014079,
0.052422082615756406
],
"cohere/c4ai-aya-23-35b": [
0.43767196047824003,
0.026040919354464294
],
"cohere/c4ai-aya-23-8b": [
0.013483014909052663,
0.03363706833599835
],
"cohere/command-r-08-2024": [
0.374457668650282,
0.02926089754079793
],
"cohere/command-r-plus-08-2024": [
0.3830841816733316,
0.020185255968455686
],
"google/gemma-1.1-7b-it": [
0.5190375637539242,
0.027757722654111305
],
"google/gemma-2-9b-it": [
0.5181663123111222,
0.031090119385244894
],
"meta-llama/Meta-Llama-3-70B-Instruct": [
0.5685224105896568,
0.04853344616275034
],
"meta-llama/Meta-Llama-3-8B-Instruct": [
0.37936948540837095,
0.032172769265151994
],
"meta-llama/Meta-Llama-3.1-70B-Instruct": [
0.603536768244583,
0.027191895488989915
],
"mistralai/Mistral-7B-Instruct-v0.2": [
0.4071166722276529,
0.04577594028555328
],
"mistralai/Mistral-7B-Instruct-v0.3": [
0.41195018984687265,
0.056184679972755454
],
"openai/gpt-4-turbo-2024-04-09": [
0.6106943361444249,
0.02932446842558468
],
"openai/gpt-4o-2024-05-13": [
0.5833874065757011,
0.023695391445384514
]
}

sorted_data = dict(sorted(data.items(), key=lambda item: item[1][0]))
labels_sorted = list(sorted_data.keys())
means_sorted = [v[0] for v in sorted_data.values()]
std_devs_sorted = [v[1] for v in sorted_data.values()]

sns.set(style="whitegrid")
palette = sns.color_palette("coolwarm", len(labels_sorted))

plt.figure(figsize=(10, 6))
x_pos_sorted = np.arange(len(labels_sorted))

ax1 = sns.barplot(x=x_pos_sorted, y=means_sorted, palette=palette, errorbar=None)
plt.errorbar(x_pos_sorted, means_sorted, yerr=std_devs_sorted, fmt='none', c='black', capsize=5)

ax1.spines['top'].set_color('black')
ax1.spines['right'].set_color('black')
ax1.spines['left'].set_color('black')
ax1.spines['bottom'].set_color('black')
for spine in ax1.spines.values():
spine.set_linewidth(2) # Make the border thicker

plt.ylim(0, 0.8)

plt.xticks(x_pos_sorted, labels_sorted, rotation=90)
plt.ylabel("Cohen's Kappa")
plt.title('Average Inner-Model Agreement Across Languages')

plt.tight_layout()
plt.savefig(f"./innermodel_agreement.pdf", bbox_inches='tight')
101 changes: 101 additions & 0 deletions analysis/maple_results.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
import json
from pathlib import Path

import argparse
import logging
from pathlib import Path
from typing import Optional

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from huggingface_hub import snapshot_download
import datasets
import json

import numpy as np
import matplotlib.pyplot as plt
from itertools import combinations
from collections import defaultdict


FONT_SIZES = {"small": 12, "medium": 16, "large": 18}

PLOT_PARAMS = {
"font.family": "serif",
"font.serif": ["Times New Roman", "STIX"],
"font.size": FONT_SIZES.get("medium"),
"axes.titlesize": FONT_SIZES.get("large"),
"axes.labelsize": FONT_SIZES.get("large"),
"xtick.labelsize": FONT_SIZES.get("large"),
"ytick.labelsize": FONT_SIZES.get("small"),
"legend.fontsize": FONT_SIZES.get("medium"),
"figure.titlesize": FONT_SIZES.get("medium"),
"text.usetex": False,
}

logging.basicConfig(level=logging.INFO)

plt.rcParams.update(PLOT_PARAMS)

def load_json(json_file_path):
with open(json_file_path, "r") as file:
json_data = json.load(file)
return json_data

results_dir = 'data/eval-results-maple'
results_path = Path(results_dir)

results_all = []
for result_file in results_path.glob("*.json"):
raw_results = load_json(result_file)
if "leaderboard" in raw_results.keys():
model_id = raw_results["model"]
subset_results = raw_results['subset']
overall = raw_results['scores']['accuracy']
remove_key = ['model', 'model_type', 'chat_template']
for key in remove_key:
del subset_results[key]
elif "subset_results" in raw_results.keys():
model_id = raw_results["model"]
subset_results = raw_results['subset_results']
overall = raw_results['accuracy']
else:
model_id = raw_results["model"]
subset_results = raw_results['extra_results']
overall = raw_results['accuracy']
# print(model_id, overall)
# print("\t", subset_results)
# results_all.append([model_id, overall, subset_results])
results_all.append({'Model': model_id, 'Avg': overall, **subset_results})

# import ipdb; ipdb.set_trace()

TOP = 10
# results_all.sort(key=lambda x: x[1], reverse=True)
# results_all = results_all[:TOP]
# print(results_all)

df_results = pd.DataFrame(results_all)
df_results = df_results.sort_values(by='Avg', ascending=False).reset_index(drop=True)
df_results = df_results.head(10).reset_index(drop=True)

df_results.columns = df_results.columns.str.replace('^maple-', '', regex=True)
df_results = df_results.set_index("Model")
df_results = df_results * 100
fig, ax = plt.subplots(1, 1, figsize=(18, 5))

sns.heatmap(df_results, ax=ax, cmap="YlGn", annot=True, annot_kws={"size": 16},
fmt=".1f", cbar=False)

ax.xaxis.set_ticks_position("top")
ax.tick_params(axis="x", labelrotation=45)
ax.set_ylabel("")
ax.set_yticklabels([f"{model} " for model in df_results.index])

plt.tight_layout()

plt.savefig("plots/maple.pdf", bbox_inches="tight")
# import ipdb; ipdb.set_trace()


0 comments on commit a8222bb

Please sign in to comment.