-
Notifications
You must be signed in to change notification settings - Fork 7
/
diffnet.py
788 lines (655 loc) · 25.9 KB
/
diffnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
__doc__ = '''
DiffNet
-------
DiffNet is a Python tool for finding optimal allocations of sampling
in computational or experimental measurements of the individual
quantities and their pairwise differences, so as to minimize the covariance
in the estimated quantities.
License
-------
Released as free software. NO WARRANTY. Use AS IS.
Copyright (C) 2018-2020
Huafeng Xu
Please cite https://doi.org/10.1021/acs.jcim.9b00528 if you use this
in a publication. '''
import numpy as np
from scipy import linalg
import cvxopt
from cvxopt import matrix, spmatrix
import heapq
import networkx as nx
import graph
try:
from scipy.linalg import null_space
except ImportError:
from scipy.linalg import svd
def null_space( A, rcond=None):
u, s, vh = svd(A, full_matrices=True)
M, N = u.shape[0], vh.shape[1]
if rcond is None:
rcond = np.finfo(s.dtype).eps * max(M, N)
tol = np.amax(s) * rcond
num = np.sum(s > tol, dtype=int)
Q = vh[num:,:].T.conj()
return Q
from A_opt import solution_to_nij, measurement_index
from A_opt import A_optimize_fast, update_A_optimal_sdp, A_optimize_sdp
def sum_upper_triangle( x):
'''
Return the sum of the upper triangle elements of the square matrix x.
'''
if not isinstance(x, matrix): x = matrix( x)
s = 0.
for i in xrange( x.size[0]):
for j in xrange( i, x.size[1]):
s += x[i,j]
return s
def lndetC( sij, x, hessian=False):
'''
f = ln det C = ln det F^{-1} = -ln det F
where F = \sum_m^M x_m v_m.v_m^t
By Jacob's formula
df/dx_m = -tr(F^{-1}.(v_m.v_m^t))
The second derivative is
d^2 f/dx_a dx_b = -tr( dC/dx_b.v_a.v_a^t)
= tr( C.dF/dx_b.C.v_a.v_a^t)
= tr( C.v_b.v_b^t.C.v_a.v_a^t)
Return:
tuple (f, d/dx f) if hessian is false
tuple (f, d/dx f, d^2/dx^2 f) if hessian is true.
'''
if not isinstance( sij, matrix): sij = matrix( sij)
K = sij.size[0]
M = K*(K+1)/2
F = matrix( 0., (K, K))
for i in xrange( K):
# n_{ii}*v_{ii}.v_{ii}^t
F[i,i] += x[i]/(sij[i,i]*sij[i,i])
for j in xrange( i+1, K):
m = measurement_index( i, j, K)
v2 = x[m]/(sij[i,j]*sij[i,j])
F[i,i] += v2
F[j,j] += v2
F[i,j] = F[j,i] = -v2
C = linalg.inv( F)
fval = -np.log(linalg.det( F))
df = matrix( 0., (1, M))
for i in xrange( K):
df[i] = -C[i,i]/(sij[i,i]*sij[i,i])
for j in xrange( i+1, K):
m = measurement_index( i, j, K)
df[m] = (2*C[i,j] - C[i,i] - C[j,j])/(sij[i,j]*sij[i,j])
if not hessian:
return (fval, df)
# Compute the Hessian
d2f = matrix( 0., (M, M))
for i in xrange( K):
for j in xrange( i, K):
# d^2/dx_i dx_j = C_{ij}^2/(s_{ii}^2 s_{jj}^2)
d2f[i, j] = C[i,j]*C[i,j]/(sij[i,i]*sij[i,i]*sij[j,j]*sij[j,j])
d2f[j, i] = d2f[i, j]
for i2 in xrange( K):
for j2 in xrange( i2+1, K):
m2 = measurement_index( i2, j2, K)
# d^2/dx_id_x(i',j') = (C_{ii'}-C_{ji'})^2/(s_{i'i'}^2 s_{ij}^2)
dC = C[i2,i] - C[j2,i]
d2f[i, m2] = dC*dC/(sij[i,i]*sij[i,i]*sij[i2,j2]*sij[i2,j2])
d2f[m2, i] = d2f[i, m2]
for j in xrange( i+1, K):
m = measurement_index( i, j, K)
invs2 = 1/(sij[i,j]*sij[i,j])
for i2 in xrange( i, K):
for j2 in xrange( i2+1, K):
m2 = measurement_index( i2, j2, K)
# d^2/dx_{ij}dx_{i'j'} =
# (C_{ii'}+C_{jj'}-C_{ji'}-C_{ij'})^2/(s_{i'j'}^2 s_{ij}^2)
dC = C[i,i2] + C[j,j2] - C[j,i2] - C[i,j2]
d2f[m,m2] = dC*dC*invs2/(sij[i2,j2]*sij[i2,j2])
d2f[m2,m] = d2f[m,m2]
return (fval, df, d2f)
def A_optimize( sij, nadd=1., nsofar=None, delta=None,
only_include_measurements=None,
method='conelp'):
'''
Find the A-optimal of the difference network that minimizes the trace of
the covariance matrix. This corresponds to minimizing the average error.
In an iterative optimization of the difference network, the
optimal allocation is updated with the estimate of s_{ij}, and we
need to allocate the next iteration of sampling based on what has
already been sampled for each pair.
Args:
sij: KxK symmetric matrix, where the measurement variance of the
difference between i and j is proportional to s[i][j]^2 =
s[j][i]^2, and the measurement variance of i is proportional to
s[i][i]^2.
nadd: float, Nadd gives the additional number of samples to be collected in
the next iteration.
nsofar: KxK symmetric matrix, where nsofar[i,j] is the number of samples
that has already been collected for (i,j) pair.
delta: a length K vector. delta[i] is the measurement uncertainty on the
quantity x[i] from an independent experiment; if no independent experiment
provides a value for x[i], delta[i] can be set to None or numpy.infty.
only_include_measurements: set of pairs, if not None, indicate which
pairs should be considered in the optimal network. Any pair (i,j) not in
the set will be excluded in the allocation (i.e. dn[i,j] = 0). The pair
(i,j) in the set must be ordered so that i<=j.
method: 'conelp' (DEFAULT, with fast KKT solver), 'sdp'
(Semidefinite programming).
Return:
KxK symmetric matrix of float, the (i,j) element of which gives the
number of samples to be allocated to the measurement of (i,j) difference
in the next iteration.
'''
if 'conelp'==method:
nij = A_optimize_fast( sij, nadd, nsofar, delta,
only_include_measurements)
else:
if delta is not None:
raise ValueError, 'Currently delta values are only supported in A-optimal by the conelp method.'
if nsofar is None:
nij = A_optimize_sdp( sij)
nij *= nadd
else:
nij = update_A_optimal_sdp( sij, nadd, nsofar,
only_include_measurements)
return nij
def D_optimize( sij):
'''
Find the D-optimal of the difference network that minimizes the log of
the determinant of the covariance matrix. This corresponds to minimize
the volume of the confidence ellipsoid for a fixed confidence level.
Args:
sij: KxK symmetric matrix, where the measurement variance of the
difference between i and j is proportional to s[i][j]^2 =
s[j][i]^2, and the measurement variance of i is proportional to
s[i][i]^2.
Return:
nij: symmetric matrix, where n[i][j] is the fraction of measurements
to be performed for the difference between i and j, satisfying
\sum_i n[i][i] + \sum_{i<j} n[i][j] = 1.
The implementation follows Chapter 7.5 (Experimental design) of Boyd,
Convex Optimization (http://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf)
and http://cvxopt.org/userguide/solvers.html#problems-with-nonlinear-objectives.
'''
if not isinstance( sij, matrix): sij = matrix( sij)
assert( sij.size[0]==sij.size[1])
K = sij.size[0]
M = K*(K+1)/2
def F( x=None, z=None):
if x is None:
x0 = matrix( [ sij[i,i] for i in xrange( K) ] +
[ sij[i,j] for i in xrange( K)
for j in xrange( i+1, K) ], (M, 1))
return (0, x0)
if z is None:
return lndetC( sij, x)
f, df, d2f = lndetC( sij, x, True)
return (f, df, z[0]*d2f)
# The constraint n_m >= 0, formulated as G.x <= h
G = matrix( np.diag( -np.ones( M)))
h = matrix( np.zeros( M))
# The constraint \sum_m n_m = 1.
A = matrix( [1.]*M, (1, M))
b = matrix( 1., (1, 1))
sol = cvxopt.solvers.cp( F, G, h, A=A, b=b)
n = solution_to_nij( sol, K)
return n
def constant_relative_error( si):
'''
Construct a difference network with constant relative error, such that
s_{ij} = s_i - s_j, from the given $s_i$.
Return:
sij = s_i - s_j
'''
K = len(si)
si = np.sort( si)
sij = np.diag( si)
for i in xrange( K):
for j in xrange( i+1, K):
sij[i,j] = sij[j,i] = si[j] - si[i]
return matrix( sij)
def A_optimize_const_relative_error( si):
'''
Find the A-optimal of the difference network where s_{ij} = |s_i - s_j|.
'''
K = len(si)
si = np.sort( si)
nij = np.zeros( (K, K), dtype=float)
N = nij[0,0] = np.sqrt( K)*si[0]
for i in xrange(K-1):
nij[i+1, i] = nij[i, i+1] = np.sqrt(K - (i+1))*(si[i+1] - si[i])
N += nij[i, i+1]
nij = matrix( nij/N)
assert( abs(sum_upper_triangle( nij) - 1) < 1e-10)
return nij
def D_optimize_const_relative_error( si):
'''
Find the D-optimal of the difference network where s_{ij} = |s_i - s_j|.
'''
K = len(si)
si = np.sort( si)
iK = 1./K
nij = np.zeros( (K, K), dtype=float)
nij[0,0] = iK
for i in xrange(K-1):
nij[i,i+1] = nij[i+1,i] = iK
return matrix( nij)
def E_optimize( sij):
'''
Find the E-optimal of the difference network that minimizes the largest
eigenvalue of the covariance matrix. This is equivalent to minimizing
the diameter of the confidence ellipsoid.
Args:
sij: KxK symmetric matrix, where the measurement variance of the
difference between i and j is proportional to s[i][j]^2 =
s[j][i]^2, and the measurement variance of i is proportional to
s[i][i]^2.
Return:
nij: symmetric matrix, where n[i][j] is the fraction of measurements
to be performed for the difference between i and j, satisfying
\sum_i n[i][i] + \sum_{i<j} n[i][j] = 1.
The implementation follows Chapter 7.5 (Experimental design) of Boyd,
Convex Optimization (http://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf)
and https://cvxopt.org/userguide/coneprog.html#semidefinite-programming
'''
# We solve the dual problem, which can be cast as a semidefinite
# programming (SDP) problem.
if not isinstance( sij, matrix): sij = matrix( sij)
assert( sij.size[0] == sij.size[1])
K = sij.size[0]
M = K*(K+1)/2
# x = ( n, t ) where t \in R
# We will minimize t = c.x
c = matrix( [ 0. ]*M + [1.] )
# Subject to the following constraints
# \sum_{m=1}^M n_m v_m.v_m^t - t I >= 0
# G matrix, of dimension (K*K, M+1).
# G[i*K + j] = (v_m.v_m^t)[i,j]
G = matrix( 0., (K*K, M+1))
h = matrix( 0., (K, K))
for i in xrange( K):
G[i*(K+1), i] = 1./(sij[i,i]*sij[i,i])
G[i*(K+1), M] = 1. # The column-major identity matrix for t.
for j in xrange( i+1, K):
m = measurement_index( i, j, K)
v2 = 1./(sij[i,j]*sij[i,j])
G[j*K + i, m] = G[i*K + j, m] = -v2
G[i*(K+1), m] = G[j*(K+1), m] = v2
# G.(x,t) >= 0 <=> -G.(x,t) + s = 0 & s >= 0
G *= -1.
# The constraint n >= 0.
G0 = matrix( np.diag(np.concatenate( [ -np.ones( M), np.zeros( 1) ])))
h0 = matrix( np.zeros( M + 1))
# The constraint \sum_m n_m = 1.
A = matrix( [1.]*M + [0.], (1, M + 1) )
b = matrix( 1., (1, 1) )
sol = cvxopt.solvers.sdp( c, G0, h0, [ G ], [ h ], A, b)
n = solution_to_nij( sol, K)
return n
def Dijkstra_shortest_path( sij):
'''
Find the shortest path tree from the origin to every node, where the
distance between nodes (i, j) are given by sij[i,j], and the distance
between node i and the origin is sij[i,i].
This implementation follows https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm.
'''
K = sij.size[0]
dist = np.inf*np.ones( K+1, dtype=float)
prev = -1*np.ones( K+1, dtype=int)
# The origin has index K.
dist[K] = 0
q = [(0, K)]
while q:
d, u = heapq.heappop( q)
for v in xrange( K):
suv = sij[u,v] if u != K else sij[v,v]
dp = d + suv
if dp < dist[v]:
dist[v] = dp
prev[v] = u
heapq.heappush( q, (dp, v))
return dist, prev
def E_optimal_tree( sij):
'''
Construct a tree where each weighted edge represents a difference
measurement--and the weight is the fraction of measurements allocated
to the corresponding edege--so that the measurements minimizes the
largest eigenvalue of the covariance matrix.
Args:
sij: KxK symmetric matrix, where the measurement variance of the
difference between i and j is proportional to s[i][j]^2 =
s[j][i]^2, and the measurement variance of i is proportional to
s[i][i]^2.
Return:
nij: symmetric matrix, where n[i][j] is the fraction of measurements
to be performed for the difference between i and j, satisfying
\sum_i n[i][i] + \sum_{i<j} n[i][j] = 1.
'''
if not isinstance( sij, matrix): sij = matrix( sij)
# a[i] = \sum_{e\elem E_i s_e}, where E_i is the shortest path
# from origin to i. prev[i] is the node preceding i in E_i.
K = sij.size[0]
a, prev = Dijkstra_shortest_path( sij)
suma2 = np.sum( np.square( a))
lamb = 1./suma2
# For each node, compute \sum_{j \elem T_i} a_j, where j runs over
# the set of nodes in the subtree T_i rooted at i, including i itself.
suma = np.zeros( K, dtype=float)
for v in xrange( K):
suma[v] += a[v]
u = prev[v]
# Follow up the tree until the root at the origin
while u != K: # not the origin
suma[u] += a[v] # Add a[v] to each node u for v \elem T_u
u = prev[u]
# n_{i\mu_i} = s_{i\mu_i} \lambda \sum_{j\elem T_i} a_j
nij = matrix( 0., (K, K))
for i in xrange( K):
j = prev[i]
if j!=K: # not the origin
nij[i,j] = sij[i,j]*suma[i]
nij[j,i] = nij[i,j]
else:
nij[i,i] = sij[i,i]*suma[i]
nij *= lamb
return nij
OPTIMIZERS = dict(
D = D_optimize, A = A_optimize, E = E_optimize, Etree = E_optimal_tree
)
def optimize( sij, optimalities=[ 'D', 'A', 'E', 'Etree' ],
cutoff=1e-4):
'''
Find the optimal allocation of sampling to the measurements
of differences, according to the specified types of optimalities.
Args:
sij: KxK symmetric matrix, where the measurement variance of the
difference between i and j is proportional to s[i][j]^2 =
s[j][i]^2, and the measurement variance of i is proportional to
s[i][i]^2.
optimalities: list of choices, including 'D', 'A', 'E', and 'Etree'.
This specifies the types of optimalities to solve (D-optimal, A-optimal,
E-optimal, E-optimal as a tree).
cutoff: float, if n_{ij} < cutoff s_{ij}/\sum_{i<=j} s_{ij}, we set
n_{ij} = 0
Return:
results: dict, where the keys are 'D', 'A', 'E', 'Etree'.
n = results[key] is a symmetric matrix, where n[i][j] is the fraction of
measurements to be performed for the difference between i and j,
satisfying
\sum_i n[i][i] + \sum_{i<j} n[i][j] = 1.
'''
nijc = cutoff*sij/np.sum( np.triu( sij))
results = dict()
if not isinstance( sij, matrix): sij = matrix( sij)
for o in optimalities:
try:
nij = np.array( OPTIMIZERS[o]( sij))
nij[ nij < nijc ] = 0.
results[o] = matrix( nij)
except ValueError:
results[o] = None
return results
def MLestimate( xij, invsij2, x0=None, di2=None):
'''
Given the measurements and their associated statistical errors,
estimate the individual quantities.
Args:
xij: KxK antisymmetricmatrix, where xij[i][j] = xi - xj is the
measured difference between xi and xj for j!=i, and xij[i][i] = xi
is the measured value of xi. If a measurement is absent, the
corresponding xij element can be an arbitrary real number.
invsij2: KxK symmetric matrix, where invsij2[i][j] =
1/\sigma_{ij}^2 is the inverse of the statistical variance for
measurement xij[i][j]. If a measurement is absent, the
corresponding invsij2 element should be set to 0 (as the
statistical variance of the measurement is infinity).
x0: K-element array, where x0[i] is the input a priori value of the i'th
quantity. x0[j]=None indicates that there is no input value for the i'th
quantity.
di2: length K array, di2[i] = 1/delta[i]^2, where delta[i] is the
uncertainty in the input a priori value of x0[i]. di2[i]=0 if x0[i]=None.
Return:
x: a K element array, where x[i] is the estimate for the quantity xi.
In the case that the Fisher matrix is not full-ranked, the returned x
minimizes \sum_j (x[j] - x0[j])^2 where j goes over all indices for which
x0[j] is not None. This minimizes the RMSE of the estimates from the
a priori input.
v: a Kxd matrix, where v is the null space of the Fisher information matrix
F v[:,i] = 0 for i=0,1,...,d
'''
xij = np.array( xij)
invsij2 = np.array( invsij2)
# z_i = \sigma_i^{-2} x_i + \sum_{j\neq i} \sigma_{ij}^{-2} x_{ij}
z = np.sum( invsij2*xij, axis=1)
if di2 is not None and x0 is not None:
for i in xrange( len(z)):
if x0[i] is not None and x0[i] is not np.nan and di2[i] != 0:
z[i] += di2[i]*x0[i]
# F[i][i] = \sigma_i^{-2} + \delta_i^{-2} + \sum_{k\neq i} \sigma_{ik}^{-2}
Fd = np.diag( np.sum( invsij2, axis=1))
if di2 is not None:
# F[i][i] += 1/delta[i]^2
Fd += np.diag( di2)
# F[i][j] = -\sigma_{ij}^{-2} for i\neq j
F = -invsij2 + np.diag( np.diag( invsij2)) + Fd
rcond = np.finfo(F.dtype).eps * max(xij.shape[0], xij.shape[1])
x, residuals, rank, sv = linalg.lstsq( F, z, rcond)
v = null_space( F, rcond)
assert( rank + v.shape[1] == xij.shape[0])
if (v.shape[1]==0 or x0 is None): return x, v
if type(x0)==list: x0 = np.array( x0)
# Find l so as to minimize
# \sum_j (x_j + l_a v_{ja} - x_{0j})^2
dx = (x0[x0!=None].astype(float) - x[x0!=None])
vp = v[x0!=None,:]
lv, _, _, _ = linalg.lstsq( vp, dx)
# vv = vp.dot( vp)
# dxv = dx.dot( vp)
# lv = linalg.solve( vv, dxv)
x += v.dot( lv)
return x, v
def covariance( invv, delta=None):
'''Compute the covariance matrix of the difference network.
Args:
invv: KxK symmetric matrix, where the measurement variance of the
difference between i and j is 1/invv[i,j] = sigma[i,j]^2, the measurement
variance of i is 1/invv[i][i] = sigma[i,i]^2.
delta: length K vector, delta[i] is the standard deviation on the
input reference value of x[i] (measured by an
independentexperiment). delta[i] = numpy.infty if there is no reference
value for x[i].
Return:
KxK symmetric matrix for the covariance matrix of the corresponding
difference network.
The covariance matrix is the inverse of the Fisher information matrix:
F[i,i] = invv[i,i] + \sum_{k!= i} invv[i,k]
F[i,j] = -invv[i,j]
'''
invv = matrix(invv)
K = invv.size[0]
f = invv
if np.all( np.diag(f) == 0) and delta is None:
return covariance_singular_Fisher( f)
F = np.diag( np.sum(f, axis=1) )
for k in xrange(K): f[k,k] = 0
F -= f
if delta is not None:
di2 = np.square( 1/delta)
F += np.diag( di2)
C = linalg.inv( F)
return C
def covariance_singular_Fisher( invv):
''' Compute the covariance matrix of the difference network, when
invv[i][i] = 0 for all i, thus the Fisher information matrix is singular.
In this case, we constrain the mean of { x_i } to a prescribed value,
which makes the covariance well defined. The covariance can be determined
by
1' C = 0
F C + 1/K = I
Args:
invv: KxK symmetric matrix, where the measurement variance of the
difference between i and j is 1/invv[i,j] = sigma[i,j]^2, the measurement
variance of i is 1/invv[i][i] = sigma[i,i]^2.
Return:
KxK symmetric matrix for the covariance matrix of the corresponding
difference network.
'''
invv = matrix(invv)
K = invv.size[0]
F = np.diag( np.sum( invv, axis=1))
F -= invv
F1 = np.zeros( (K+1, K+1))
F1[0, :K] = np.ones( K)
F1[1:, K] = np.ones( K)
F1[1:, :K] = F
I0 = np.zeros( (K+1, K))
I0[1:, :] = np.diag( np.ones(K))
C1 = np.linalg.solve( F1, I0)
C = C1[:K, :]
return C
def round_to_integers( n):
'''
Round the allocations n_{e} to nearest integers i(n_e) = \floor{n_e} or
\ceil{n_e} so that
\sum_e i(n_e) = \sum_e n_e
'''
K = matrix( n).size[0]
nsum = 0
nceilsum = 0
edges = []
nint = np.zeros( (K, K), dtype=int)
for i in xrange(K):
for j in xrange(i, K):
nsum += n[i,j]
nint[i,j] = nint[j,i] = int(np.ceil( n[i,j]))
nceilsum += nint[i,j]
heapq.heappush( edges, (-n[i,j], (i,j)))
nsum = int(np.floor(nsum + 0.5))
surplus = nceilsum - nsum
for k in xrange( surplus):
d, (i, j) = heapq.heappop( edges)
nint[i,j] -= 1
nint[j,i] = nint[i,j]
return nint
def MST_optimize( sij, allocation='std'):
'''
Measure the differences through a minimum spanning tree.
Args:
sij: KxK symmetric matrix, where the measurement variance of the
difference between i and j is proportional to s[i][j]^2 =
s[j][i]^2, and the measurement variance of i is proportional to
s[i][i]^2.
allocation: string - can be 'std', 'var', or 'n'.
if 'std', allocate n_{ij} \propto s_{ij},
if 'var', allocate n_{ij} \propto s_{ij}^2
if 'n', allocate n_{ij} = const
n_{ij} = 0 for all (i,j) that are not part of the minimum spanning tree.
Return:
n: KxK symmetric matrix, where n[i][j] is the fraction of measurements
to be performed for the difference between i and j, satisfying
\sum_i n[i][i] + \sum_{i<j} n[i][j] = 1.
'''
K = sij.size[0]
G = graph.diffnet_to_graph( sij)
T = nx.minimum_spanning_tree( G)
n = matrix( 0., (K, K))
for i, j, data in T.edges( data=True):
weight = data['weight']
if allocation == 'var':
weight *= weight
elif allocation == 'n':
weight = 1.
if i=='O':
n[j,j] = weight
elif j=='O':
n[i,i] = weight
else:
n[i,j] = n[j,i] = weight
s = sum_upper_triangle( n)
n *= (1./s) # So that \sum_{i<=j} n_{ij} = 1
return n
def sparse_A_optimal_network( sij, nadd=1., nsofar=None,
n_measure=0, connectivity=2,
sparse_by_fluctuation=True):
'''
Construct a sparse A-optimal network, so that (approximately) only
max_measure different measurements will receive resource
allocations, while guaranteeing the given degree of connectivity.
Args:
sij: KxK symmetric matrix, where the measurement variance of the
difference between i and j is proportional to s[i][j]^2 =
s[j][i]^2, and the measurement variance of i is proportional to
s[i][i]^2.
nadd: float, nadd gives the additional number of samples to be collected in
the next iteration.
nsofar: KxK symmetric matrix, where nsofar[i,j] is the number of samples
that has already been collected for (i,j) pair.
n_measure: int, the number of measurements to receive allocations.
The actual number of measurements with non-zero allocation might exceed
this number in order to guarantee the connectivity. If it is zero, the
number of measurements will be determined by the connectivity requirement.
connectivity: int, ensure that the resulting difference network is k-edge
connected.
sparse_by_fluctuation: bool, if True, generate the sparse network by
minimizing \sum_e s_e in the k-connected spanning subgraph.
Return:
KxK symmetric matrix of float, the (i,j) element of which gives the
number of samples to be allocated to the measurement of (i,j) difference
in the next iteration.
'''
K = sij.size[0]
if nsofar is None:
nsofar = np.zeros( (K, K), dtype=float)
if not sparse_by_fluctuation:
# First, get the dense optimal network
nij = update_A_optimal_sdp( sij, nadd, nsofar)
def weight( i, j, epsilon=1e-10):
n = nij[i,j]
large = 1/epsilon
if n > epsilon:
return 1./n
else:
return large
else:
def weight( i,j):
return sij[i,j]
# Next, get the k-connected graph that approximately minimizes the
# sum of 1/n_{ij}.
G = nx.Graph()
G.add_nodes_from( range( K))
G.add_node( 'O')
edges = []
for i in xrange(K):
edges.append( ('O', i, weight( i,i)))
for j in xrange(i+1, K):
edges.append( (i, j, weight(i,j)))
edges = list(nx.k_edge_augmentation( G, k=connectivity, partial=True))
# Include only the edges that guarantee k-connectivity and nothing else
only_include_measurements = set([])
for i, j in edges:
if 'O'==i:
only_include_measurements.add( (j,j))
elif 'O'==j:
only_include_measurements.add( (i,i))
else:
if i<j:
only_include_measurements.add( (i,j))
else:
only_include_measurements.add( (j,i))
# If there is additional allowance for the number of measurements,
# add the remaining ones with the largest allocations from the dense
# network.
if (len(only_include_measurements) < n_measure):
indices = []
for i in xrange(K):
for j in xrange(i, K):
if (i,j) in only_include_measurements:
continue
heapq.heappush( indices, (weight(i,j), (i,j)))
addition = []
for m in xrange(n_measure - len(only_include_measurements)):
_w, (i,j) = heapq.heappop( indices)
addition.append( (i,j))
only_include_measurements.update( addition)
nij = update_A_optimal_sdp( sij, nadd, nsofar, only_include_measurements)
return nij