Skip to content

Commit

Permalink
feat(example): demo rfft of a closed-form function
Browse files Browse the repository at this point in the history
  • Loading branch information
rouson committed Mar 11, 2024
1 parent 9316a08 commit 14f4211
Show file tree
Hide file tree
Showing 2 changed files with 62 additions and 2 deletions.
13 changes: 11 additions & 2 deletions example/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,2 +1,11 @@
add_executable(bench1 bench1.f90)
target_link_libraries(bench1 fftpack)
add_executable(bench1 bench01_zfft.f90)
target_link_libraries(bench1 fftpack)

add_executable(bench2 bench02_zfft.f90)
target_link_libraries(bench2 fftpack)

add_executable(bench3 bench03_dfft.f90)
target_link_libraries(bench3 fftpack)

add_executable(rfft_example)
target_link_libraries(rfft_example fftpack)
51 changes: 51 additions & 0 deletions example/real-forward-transform.f90
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
program forward_transform_of_real_function
!! This program invokes fftpack's rrft function to compute the forward transform of a real function
!! and constructs the resulting complex Fourier coefficients by (re)organizing and normalizing the
!! rfft result according to array element layout described at [1]. The program also demonstrates
!! the inverse transform of the raw rrft result to recover the original function.
!!
!! [1] https://docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.rfft.html#scipy.fftpack.rfft
use fftpack, only: rfft, irfft
implicit none
integer j, k
integer, parameter :: N = 8
double precision, parameter :: two_pi = 2.D0*acos(-1.D0), tolerance = 1.0D-06, f_avg = 3.D0, zero=0.D0
double precision, parameter :: x(0:N-1) = [(two_pi*dble(j)/dble(N), j=0,N-1)]
double precision, parameter :: f(0:N-1) = f_avg + cos(x)
!! sample f(x) = 3 + cos(x) uniformly on [0,2*pi)
!! = 3 + (exp(i*x) - exp(-i*x))/2
!! which yields the Fourier coefficients
!! { 3, k = 0
!! f_hat = { 1/2, k = 1
!! { 0, otherwise
double precision, dimension(0:N-1) :: f_round_trip, rfft_f
integer, parameter :: rk = kind(two_pi)
complex(rk) f_hat(0:N/2)
character(len=*), parameter :: real_format = "(a,*(g10.4,:,1x))" !! space-separated values
character(len=*), parameter :: complex_format= "(a,*('(',g10.4,',',g10.4,')',:,1x)))" !! space-separated complex values

call assert(mod(N,2)==0, "the algorithm below requires even N")

rfft_f(:) = rfft(f)/dble(N)
f_hat(:) = [ &
cmplx(rfft_f(0),zero), &
[( cmplx(rfft_f(k),rfft_f(k+1)), k=lbound(rfft_f,1)+1,ubound(rfft_f,1)-1,2)], &
cmplx(zero,rfft_f(N-1)) &
]
f_round_trip(:) = irfft(rfft_f)

print real_format, "f = ", f
print complex_format, "f_hat = ", f_hat
print real_format, "f_round_trip = ",f_round_trip

call assert(any(abs(f_round_trip - f) < tolerance), "inverse of forward FFT must yield the original function")

contains

pure subroutine assert(assertion, description)
logical, intent(in) :: assertion
character(len=*), intent(in) :: description
if (.not. assertion) error stop description
end subroutine

end program

0 comments on commit 14f4211

Please sign in to comment.