Skip to content

Commit

Permalink
Merge branch 'fortran-lang:master' into refactor_lapack
Browse files Browse the repository at this point in the history
  • Loading branch information
jalvesz authored Jan 3, 2025
2 parents ae12308 + 05e44f0 commit 35f22ef
Show file tree
Hide file tree
Showing 12 changed files with 867 additions and 13 deletions.
76 changes: 76 additions & 0 deletions doc/specs/stdlib_linalg.md
Original file line number Diff line number Diff line change
Expand Up @@ -1007,6 +1007,82 @@ This subroutine computes the internal working space requirements for the QR fact
{!example/linalg/example_qr_space.f90!}
```

## `schur` - Compute the Schur decomposition of a matrix

### Status

Experimental

### Description

This subroutine computes the Schur decomposition of a `real` or `complex` matrix: \( A = Z T Z^H \), where \( Z \) is unitary (orthonormal) and \( T \) is upper-triangular (for complex matrices) or quasi-upper-triangular (for real matrices, with possible \( 2 \times 2 \) blocks on the diagonal). Matrix \( A \) has size `[n,n]`.

The results are returned in output matrices \( T \) and \( Z \). Matrix \( T \) is the Schur form, and matrix \( Z \) is the unitary transformation matrix such that \( A = Z T Z^H \). If requested, the eigenvalues of \( T \) can also be returned as a `complex` array of size `[n]`.

### Syntax

`call ` [[stdlib_linalg(module):schur(interface)]] `(a, t [, z,] [, eigvals] [, overwrite_a] [, storage] [, err])`

### Arguments

- `a`: Shall be a rank-2 `real` or `complex` array containing the matrix to be decomposed. It is an `intent(inout)` argument if `overwrite_a = .true.`; otherwise, it is an `intent(in)` argument.

- `t`: Shall be a rank-2 array of the same kind as `a`, containing the Schur form \( T \) of the matrix. It is an `intent(out)` argument and should have a shape of `[n,n]`.

- `z`: Shall be a rank-2 array of the same kind as `a`, containing the unitary matrix \( Z \). It is an `intent(out)` argument and is optional. If provided, it should have the shape `[n,n]`.

- `eigvals` (optional): Shall be a rank-1 `complex` or `real` array of the same kind as `a`, containing the eigenvalues of \( A \) (the diagonal elements of \( T \)), or their `real` component only. The array must be of size `[n]`. If not provided, the eigenvalues are not returned. It is an `intent(out)` argument.

- `overwrite_a` (optional): Shall be a `logical` flag (default: `.false.`). If `.true.`, the input matrix `a` will be overwritten and destroyed upon return, avoiding internal data allocation. It is an `intent(in)` argument.

- `storage` (optional): Shall be a rank-1 array of the same type and kind as `a`, providing working storage for the solver. Its minimum size can be determined with a call to [[stdlib_linalg(module):schur_space(interface)]]. It is an `intent(inout)` argument.

- `err` (optional): Shall be a `type(linalg_state_type)` value. It is an `intent(out)` argument. If not provided, exceptions trigger an `error stop`.

### Return value

Returns the Schur decomposition matrices into the \( T \) and \( Z \) arguments. If `eigvals` is provided, it will also return the eigenvalues of the matrix \( A \).

Raises `LINALG_VALUE_ERROR` if any of the matrices have invalid or unsuitable size for the decomposition.
Raises `LINALG_VALUE_ERROR` if the `real` component is only requested, but the eigenvalues have non-trivial imaginary parts.
Raises `LINALG_ERROR` on insufficient user storage space.
If the state argument `err` is not present, exceptions trigger an `error stop`.

### Example

```fortran
{!example/linalg/example_schur_eigvals.f90!}
```

---

## `schur_space` - Compute internal working space requirements for the Schur decomposition

### Status

Experimental

### Description

This subroutine computes the internal working space requirements for the Schur decomposition, [[stdlib_linalg(module):schur(interface)]].

### Syntax

`call ` [[stdlib_linalg(module):schur_space(interface)]] `(a, lwork, [, err])`

### Arguments

- `a`: Shall be a rank-2 `real` or `complex` array containing the matrix to be decomposed. It is an `intent(in)` argument.

- `lwork`: Shall be an `integer` scalar that returns the minimum array size required for the working storage in [[stdlib_linalg(module):schur(interface)]] to decompose `a`. It is an `intent(out)` argument.

- `err` (optional): Shall be a `type(linalg_state_type)` value. It is an `intent(out)` argument.

### Return value

Returns the required working storage size `lwork` for the Schur decomposition. This value can be used to pre-allocate a workspace array in case multiple Schur decompositions of the same matrix size are needed. If pre-allocated working arrays are provided, no internal memory allocations will take place during the decomposition.


## `eig` - Eigenvalues and Eigenvectors of a Square Matrix

### Status
Expand Down
3 changes: 3 additions & 0 deletions example/linalg/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,9 @@ ADD_EXAMPLE(eigvalsh)
ADD_EXAMPLE(trace)
ADD_EXAMPLE(state1)
ADD_EXAMPLE(state2)
ADD_EXAMPLE(schur_real)
ADD_EXAMPLE(schur_complex)
ADD_EXAMPLE(schur_eigvals)
ADD_EXAMPLE(blas_gemv)
ADD_EXAMPLE(lapack_getrf)
ADD_EXAMPLE(lstsq1)
Expand Down
30 changes: 30 additions & 0 deletions example/linalg/example_schur_complex.f90
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
! This example demonstrates the Schur decomposition for a complex-valued matrix.
program example_schur_complex
use stdlib_linalg, only: schur
use stdlib_linalg_constants, only: dp
implicit none

integer, parameter :: n = 3
complex(dp), dimension(n,n) :: A, T, Z

! Initialize a complex-valued square matrix
A = reshape([ (1, 2), (3,-1), (4, 1), &
(0,-1), (2, 0), (1,-2), &
(2, 3), (1, 1), (0,-1) ], shape=[n,n])

! Compute the Schur decomposition: A = Z T Z^H
call schur(A, T, Z)

! Output results
print *, "Original Matrix A:"
print *, A
print *, "Schur Form Matrix T:"
print *, T
print *, "Unitary Matrix Z:"
print *, Z

! Test factorization: Z*T*Z^H = A
print *, "Max error in reconstruction:", maxval(abs(matmul(Z, matmul(T, conjg(transpose(Z)))) - A))

end program example_schur_complex

32 changes: 32 additions & 0 deletions example/linalg/example_schur_eigvals.f90
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
! This example includes eigenvalue computation in addition to
! the Schur decomposition for a randomly generated matrix.
program example_schur_eigenvalues
use stdlib_linalg, only: schur
use stdlib_linalg_constants, only: dp
implicit none

integer, parameter :: n = 5
real(dp), dimension(n,n) :: A, T, Z
complex(dp), dimension(n) :: eigenvalues

! Create a random real-valued square matrix
call random_number(A)

! Compute the Schur decomposition and eigenvalues
call schur(A, T, Z, eigenvalues)

! Output results
print *, "Random Matrix A:"
print *, A
print *, "Schur Form Matrix T:"
print *, T
print *, "Orthogonal Matrix Z:"
print *, Z
print *, "Eigenvalues:"
print *, eigenvalues

! Test factorization: Z*T*Z^T = A
print *, "Max error in reconstruction:", maxval(abs(matmul(Z, matmul(T, transpose(Z))) - A))

end program example_schur_eigenvalues

29 changes: 29 additions & 0 deletions example/linalg/example_schur_real.f90
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
! This example computes the Schur decomposition of a real-valued square matrix.
program example_schur_real
use stdlib_linalg, only: schur
use stdlib_linalg_constants, only: dp
implicit none
integer, parameter :: n = 3
real(dp), dimension(n,n) :: A, T, Z

! Initialize a real-valued square matrix
A = reshape([ 0, 2, 2, &
0, 1, 2, &
1, 0, 1], shape=[n,n])

! Compute the Schur decomposition: A = Z T Z^T
call schur(A, T, Z)

! Output results
print *, "Original Matrix A:"
print *, A
print *, "Schur Form Matrix T:"
print *, T
print *, "Orthogonal Matrix Z:"
print *, Z

! Test factorization: Z*T*Z^T = A
print *, "Max error in reconstruction:", maxval(abs(matmul(Z, matmul(T, transpose(Z))) - A))

end program example_schur_real

1 change: 1 addition & 0 deletions src/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ set(fppFiles
stdlib_linalg_state.fypp
stdlib_linalg_svd.fypp
stdlib_linalg_cholesky.fypp
stdlib_linalg_schur.fypp
stdlib_optval.fypp
stdlib_selection.fypp
stdlib_sorting.fypp
Expand Down
88 changes: 88 additions & 0 deletions src/stdlib_linalg.fypp
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,8 @@ module stdlib_linalg
public :: cross_product
public :: qr
public :: qr_space
public :: schur
public :: schur_space
public :: is_square
public :: is_diagonal
public :: is_symmetric
Expand Down Expand Up @@ -638,6 +640,92 @@ module stdlib_linalg
#:endfor
end interface qr_space
! Schur decomposition of rank-2 array A
interface schur
!! version: experimental
!!
!! Computes the Schur decomposition of matrix \( A = Z T Z^H \).
!! ([Specification](../page/specs/stdlib_linalg.html#schur-compute-the-schur-decomposition-of-a-matrix))
!!
!!### Summary
!! Compute the Schur decomposition of a `real` or `complex` matrix: \( A = Z T Z^H \), where \( Z \) is
!! orthonormal/unitary and \( T \) is upper-triangular or quasi-upper-triangular. Matrix \( A \) has size `[m,m]`.
!!
!!### Description
!!
!! This interface provides methods for computing the Schur decomposition of a matrix.
!! Supported data types include `real` and `complex`. If a pre-allocated workspace is provided, no internal
!! memory allocations take place when using this interface.
!!
!! The output matrix \( T \) is upper-triangular for `complex` input matrices and quasi-upper-triangular
!! for `real` input matrices (with possible \( 2 \times 2 \) blocks on the diagonal).
!!
!!@note The solution is based on LAPACK's Schur decomposition routines (`*GEES`).
!!
#:for rk,rt,ri in RC_KINDS_TYPES
module subroutine stdlib_linalg_${ri}$_schur(a, t, z, eigvals, overwrite_a, storage, err)
!> Input matrix a[m,m]
${rt}$, intent(inout), target :: a(:,:)
!> Schur form of A: upper-triangular or quasi-upper-triangular matrix T
${rt}$, intent(out), contiguous, target :: t(:,:)
!> Unitary/orthonormal transformation matrix Z
${rt}$, optional, intent(out), contiguous, target :: z(:,:)
!> [optional] Output eigenvalues that appear on the diagonal of T
complex(${rk}$), optional, intent(out), contiguous, target :: eigvals(:)
!> [optional] Can A data be overwritten and destroyed?
logical(lk), optional, intent(in) :: overwrite_a
!> [optional] Provide pre-allocated workspace, size to be checked with schur_space
${rt}$, optional, intent(inout), target :: storage(:)
!> [optional] State return flag. On error if not requested, the code will stop
type(linalg_state_type), optional, intent(out) :: err
end subroutine stdlib_linalg_${ri}$_schur

! Schur decomposition subroutine: real eigenvalue interface
module subroutine stdlib_linalg_real_eig_${ri}$_schur(a,t,z,eigvals,overwrite_a,storage,err)
!> Input matrix a[m,m]
${rt}$, intent(inout), target :: a(:,:)
!> Schur form of A: upper-triangular or quasi-upper-triangular matrix T
${rt}$, intent(out), contiguous, target :: t(:,:)
!> Unitary/orthonormal transformation matrix Z
${rt}$, optional, intent(out), contiguous, target :: z(:,:)
!> Output real eigenvalues that appear on the diagonal of T
real(${rk}$), intent(out), contiguous, target :: eigvals(:)
!> [optional] Provide pre-allocated workspace, size to be checked with schur_space
${rt}$, optional, intent(inout), target :: storage(:)
!> [optional] Can A data be overwritten and destroyed?
logical(lk), optional, intent(in) :: overwrite_a
!> [optional] State return flag. On error if not requested, the code will stop
type(linalg_state_type), optional, intent(out) :: err
end subroutine stdlib_linalg_real_eig_${ri}$_schur
#:endfor
end interface schur

! Return the working array space required by the Schur decomposition solver
interface schur_space
!! version: experimental
!!
!! Computes the working array space required by the Schur decomposition solver
!! ([Specification](../page/specs/stdlib_linalg.html#schur-space-compute-internal-working-space-requirements-for-the-schur-decomposition))
!!
!!### Description
!!
!! This interface returns the size of the `real` or `complex` working storage required by the
!! Schur decomposition solver. The working size only depends on the kind (`real` or `complex`) and size of
!! the matrix being decomposed. Storage size can be used to pre-allocate a working array in case several
!! repeated Schur decompositions of same-size matrices are sought. If pre-allocated working arrays
!! are provided, no internal allocations will take place during the decomposition.
!!
#:for rk,rt,ri in RC_KINDS_TYPES
module subroutine get_schur_${ri}$_workspace(a,lwork,err)
!> Input matrix a[m,m]
${rt}$, intent(in), target :: a(:,:)
!> Minimum workspace size for the decomposition operation
integer(ilp), intent(out) :: lwork
!> State return flag. Returns an error if the query failed
type(linalg_state_type), optional, intent(out) :: err
end subroutine get_schur_${ri}$_workspace
#:endfor
end interface schur_space

interface det
!! version: experimental
Expand Down
Loading

0 comments on commit 35f22ef

Please sign in to comment.