Skip to content

Latest commit

 

History

History
804 lines (638 loc) · 18.6 KB

ch9_lab.md

File metadata and controls

804 lines (638 loc) · 18.6 KB

9.6 Lab: Support Vector Machines

library(tidyverse)
library(e1071)
library(ROCR)
library(ISLR)

9.6.1 Support Vector Classifier

e1071::svm allows to fit a support vector classifier when using kernel="linear". Instead of setting a “budget” for violations of the margins, it uses a cost parameter.

Two-dimensions, not linearly separable

set.seed(1989)
x <- matrix(rnorm(20*2), ncol = 2)
y <- c(rep(-1, 10), rep(1, 10))

# mean shifting rows based on the assigned class
x[y==1,] <- x[y==1,] + 1

plot(x, col = (3-y))

The classes are not linearly separable.

Fitting the support vector classifier. We must encode the response variable as factor in order to do classification (and not regression).

data <- 
  tibble(
  x1 = x[,1],
  x2 = x[,2],
  y = as.factor(y)
)

svmfit <-
  svm(
    y ~ .,
    data = data,
    kernel = "linear",
    cost = 10,
    scale = FALSE
  )

scale argument is for scaling variables to have mean 0 and std. deviation 1.

plot(svmfit, data)

Support vectors are plotted as crosses and the remaining observations are plotted as circles.

We can get the indexes of the support vectors:

svmfit$index
##  [1]  1  2  5  6  7  8 10 13 15 16 17 18 19 20

We can obtain some basic information about the support vector classifier fit using the summary() command:

summary(svmfit)
## 
## Call:
## svm(formula = y ~ ., data = data, kernel = "linear", cost = 10, scale = FALSE)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  10 
## 
## Number of Support Vectors:  14
## 
##  ( 7 7 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  -1 1

This tells that there were 14 support vectors, 7 in each class.

Let’s check what happens when we use a smaller value in the cost parameter.

svmfit2 <- svm(y ~ ., data = data, kernel = "linear", cost = 0.1,
               scale = FALSE)

plot(svmfit2, data)

svmfit2$index
##  [1]  1  2  4  5  6  7  8  9 10 11 12 13 15 16 17 18 19 20

Now almost all the train observations are support vectors. This is because lowering the cost parameter is equivalent to increasing the violation budget C. We end up with model with higher bias, but lower variance.

Unfortunately, the svm() function does not explicitly output the coefficients of the linear decision boundary obtained when the support vector classifier is fit, nor does it output the width of the margin.

We can use tune() for performing cross validation using a set of parameters. By default it suses 10-fold CV

tune_out <- tune(svm,
                 y ~ .,
                 data = data,
                 kernel = "linear",
                 ranges = list(
                   cost = c(0.001, 0.01, 0.1, 1, 5, 10, 100)
                 ))

summary(tune_out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost
##    10
## 
## - best performance: 0.3 
## 
## - Detailed performance results:
##    cost error dispersion
## 1 1e-03  0.55  0.4377975
## 2 1e-02  0.55  0.4377975
## 3 1e-01  0.45  0.2838231
## 4 1e+00  0.35  0.3374743
## 5 5e+00  0.35  0.3374743
## 6 1e+01  0.30  0.3496029
## 7 1e+02  0.30  0.3496029

cost = 100 results in the lowest CV error rate.

Accessing the best model obtained:

bestmod <- tune_out$best.model
summary(bestmod)
## 
## Call:
## best.tune(method = svm, train.x = y ~ ., data = data, ranges = list(cost = c(0.001, 
##     0.01, 0.1, 1, 5, 10, 100)), kernel = "linear")
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  10 
## 
## Number of Support Vectors:  14
## 
##  ( 7 7 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  -1 1

We can use predict() to predict classes for test observations:

set.seed(2020)

xtest <- matrix(rnorm(20*2), ncol = 2)
ytest <- sample(c(-1, 1), 20, rep = TRUE)
xtest[ytest==1,] <- xtest[ytest==1,] + 1

testdat <- 
  tibble(
    x1 = xtest[,1],
    x2 = xtest[,2],
    y = ytest
  )

ypred <- predict(bestmod, testdat)

table(predict = ypred, truth = testdat$y)
##        truth
## predict -1 1
##      -1  8 3
##      1   0 9

Using the optimal value of cost, 17 of the 20 test observations are correctly classified.

What if we used cost = 0.01?

svmfit3 <- svm(y ~ ., data = data, kernel = "linear",
               cost = .01, scale = FALSE)

ypred2 <- predict(svmfit3, testdat)

table(predict = ypred2, truth = testdat$y)
##        truth
## predict -1  1
##      -1  5  2
##      1   3 10

Now only 15 (out of 20) test observations are correctly classified.

Two dimmensions, linearly separable

x_separable <- x
x_separable[y == 1,] <- x_separable[y == 1,] + 2.5

plot(x_separable, col = (y+5)/2, pch = 19)

Now we fit the classifier using a very large value of cost so that no observations are misclassified (even if we end up with few support vectors and high variance)

data_separable <- 
  tibble(
    x1 = x_separable[,1],
    x2 = x_separable[,2],
    y = as.factor(y)
  )

svmfit4 <- svm(y ~ ., data = data_separable,
               kernel = "linear", cost = 1e5, scale = FALSE)

summary(svmfit4)
## 
## Call:
## svm(formula = y ~ ., data = data_separable, kernel = "linear", cost = 1e+05, 
##     scale = FALSE)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  1e+05 
## 
## Number of Support Vectors:  3
## 
##  ( 1 2 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  -1 1
plot(svmfit4, data_separable)

All the training observations are correctly classified, and we end up with just 3 support vectors (Xs in the plot). It could be that this model will perform poorly on test data.

Trying now with a smaller value of cost:

svmfit5 <- svm(y ~ ., data = data_separable,
               kernel = "linear", cost = 0.5, scale = FALSE)

summary(svmfit5)
## 
## Call:
## svm(formula = y ~ ., data = data_separable, kernel = "linear", cost = 0.5, 
##     scale = FALSE)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  0.5 
## 
## Number of Support Vectors:  4
## 
##  ( 2 2 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  -1 1
plot(svmfit5, data_separable)

Now we misclassify one observations, but the margin is wider and we have one additional support vector. This model would probably perform better on test data.

9.6.2 Support Vector Machine

To use a non-linear kernel we just have to change the argument kernel to "polynomial" or "radial". In the former case we also have to specify a degree and in the latter, a gamma.

set.seed(1989)

x_svm <- matrix(rnorm(200*2), ncol = 2)
x_svm[1:100,] <- x_svm[1:100,] + 2
x_svm[101:150,] <- x_svm[101:150,] - 2
y_svm <- c(rep(1, 150), rep(2, 50))

data_svm <- 
  tibble(
    x1 = x_svm[,1],
    x2 = x_svm[,2],
    y = as.factor(y_svm)
  )

plot(x_svm, col = y_svm)

We see that the class boundary is indeed non-linear.

Splitting into test and train sets.

set.seed(1989)
data_svm_train <- data_svm %>% 
  sample_frac(0.5)

data_svm_test <- data_svm %>% 
  anti_join(data_svm_train)
## Joining, by = c("x1", "x2", "y")
svmfit6 <- svm(y ~ ., data = data_svm_train,
               kernel = "radial", gamma = 1,
               cost = 1)

plot(svmfit6, data_svm_train)

summary(svmfit6)
## 
## Call:
## svm(formula = y ~ ., data = data_svm_train, kernel = "radial", gamma = 1, 
##     cost = 1)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  radial 
##        cost:  1 
## 
## Number of Support Vectors:  30
## 
##  ( 17 13 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  1 2

If we increase the value of cost, we can reduce the number of training errors. However, this comes at the price of a more irregular decision boundary that seems to be at risk of overfitting the data.

svmfit7 <- svm(y ~ ., data = data_svm_train,
               kernel = "radial", gamma = 1,
               cost = 1e5)

plot(svmfit7, data_svm_train)

We can also increase gamma to add flexibility:

svmfit8 <- svm(y ~ ., data = data_svm_train,
               kernel = "radial", gamma = 20,
               cost = 1e5)

plot(svmfit8, data_svm_train)

Using tune() for cross-validation of the parameters:

set.seed(1989)

tune_out_svm <- 
  tune(svm, y ~ .,
       data = data_svm_train, kernel = "radial",
       ranges = list(
         cost = c(0.1, 1, 10, 100, 1000),
         gamma = c(0.5, 1, 2, 3, 4)
       ))

summary(tune_out_svm)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost gamma
##   100   0.5
## 
## - best performance: 0.07 
## 
## - Detailed performance results:
##     cost gamma error dispersion
## 1  1e-01   0.5  0.15 0.08498366
## 2  1e+00   0.5  0.09 0.09944289
## 3  1e+01   0.5  0.08 0.07888106
## 4  1e+02   0.5  0.07 0.08232726
## 5  1e+03   0.5  0.08 0.07888106
## 6  1e-01   1.0  0.15 0.08498366
## 7  1e+00   1.0  0.09 0.07378648
## 8  1e+01   1.0  0.10 0.08164966
## 9  1e+02   1.0  0.10 0.09428090
## 10 1e+03   1.0  0.09 0.07378648
## 11 1e-01   2.0  0.15 0.08498366
## 12 1e+00   2.0  0.10 0.10540926
## 13 1e+01   2.0  0.10 0.08164966
## 14 1e+02   2.0  0.11 0.07378648
## 15 1e+03   2.0  0.09 0.07378648
## 16 1e-01   3.0  0.15 0.08498366
## 17 1e+00   3.0  0.09 0.08755950
## 18 1e+01   3.0  0.08 0.09189366
## 19 1e+02   3.0  0.09 0.08755950
## 20 1e+03   3.0  0.09 0.08755950
## 21 1e-01   4.0  0.15 0.08498366
## 22 1e+00   4.0  0.09 0.08755950
## 23 1e+01   4.0  0.08 0.09189366
## 24 1e+02   4.0  0.09 0.08755950
## 25 1e+03   4.0  0.09 0.08755950

In this case, the best choice involves cost = 100 and gamma = 0.5. We can see how well it performs on test data:

table(
  true = data_svm_test$y,
  pred = predict(tune_out_svm$best.model, newdata = data_svm_test)
)
##     pred
## true  1  2
##    1 61  4
##    2 11 24

85% of test observations are correctly classified :)

9.6.3 ROC Curves

Creating function to plot ROC curve from vectors with predicted score and actual values:

rocplot <- function(pred, truth, ...) {
  predob <- prediction(pred, truth)
  perf <- performance(predob, "tpr", "fpr")
  plot(perf, ...)
}

To get the fitted values for a given SVM model fit we use decision.values=TRUE when fitting svm(). Then predict() will output the fitted values:

svmfit_opt <- svm(
  y ~ .,
  data = data_svm_train,
  kernel = "radial",
  gamma = 0.5,
  cost = 100,
  decision.values = TRUE
)

fitted_svm <- attributes(
  predict(svmfit_opt, data_svm_train, decision.values = TRUE)
)$decision.values

Now we can produce the ROC plot:

rocplot(fitted_svm, data_svm_train$y, main = "Training Data")

Trying to increase flexibility:

svmfit_flex <- svm(
  y ~ .,
  data = data_svm_train,
  kernel = "radial",
  gamma = 50,
  cost = 1,
  decision.values = TRUE
)

fitted_svm_flex <- 
  attributes(
    predict(svmfit_flex, data_svm_train, decision.values = TRUE)
  )$decision.values

rocplot(fitted_svm, data_svm_train$y, main = "Training Data")
rocplot(fitted_svm_flex, data_svm_train$y, add = TRUE, col = "red")

This looks like it has an overfitting problem. Let’s see what happens on test data:

fitted_svm_test <- attributes(
  predict(svmfit_opt, data_svm_test, decision.values = TRUE)
)$decision.values

fitted_svm_flex_test <- attributes(
  predict(svmfit_flex, data_svm_test, decision.values = TRUE)
)$decision.values

rocplot(fitted_svm_test, data_svm_test$y, main = "Test Data")
rocplot(fitted_svm_flex_test, data_svm_test$y,
        add = TRUE, col="red")

there are no big differences between the models.

9.6.4 SVM with Multiple Classes

If there are multiple classes, svm() will perform classification using the one-vs-one approach.

set.seed(1989)
x_mc <- rbind(x, matrix(rnorm(50*2), ncol = 2)) #mc stands for multi-class
y_mc <- c(y, rep(0, 50))
x_mc[y==0,2] <- x_mc[y==0,2] + 2

data_mc <- 
  tibble(
    x1 = x_mc[,1],
    x2 = x_mc[,2],
    y = factor(y_mc)
  )

plot(x_mc, col = (y_mc+2))

svmfit_mc <- 
  svm(
    y ~ .,
    data = data_mc,
    kernel = "radial",
    cost = 10,
    gamma = 5
  )

plot(svmfit_mc, data_mc)

### 9.6.5 Application to Gene Expression Data

names(ISLR::Khan)
## [1] "xtrain" "xtest"  "ytrain" "ytest"
dim(Khan$xtrain)
## [1]   63 2308
length(Khan$ytrain)
## [1] 63
dim(Khan$xtest)
## [1]   20 2308
length(Khan$ytest)
## [1] 20

Values that the response variable can take:

table(Khan$ytrain)
## 
##  1  2  3  4 
##  8 23 12 20

There are 63 train and 20 test observations (tissue samples) with expression measurements for 2308 genes.

We will use a support vector approach to predict cancer subtype using gene expression measurements.

Since there are a very large number of features relative to the number of observations we should use a linear kernel, because the additional flexibility that will result from using a polynomial or radial kernel is unnecessary.

data_genes <- 
  as_tibble(Khan$xtrain) %>% 
  mutate(
    y = as.factor(Khan$ytrain)
  )
## Warning: The `x` argument of `as_tibble.matrix()` must have unique column names if `.name_repair` is omitted as of tibble 2.0.0.
## Using compatibility `.name_repair`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
data_genes
## # A tibble: 63 x 2,309
##         V1    V2     V3      V4     V5      V6    V7      V8      V9    V10
##      <dbl> <dbl>  <dbl>   <dbl>  <dbl>   <dbl> <dbl>   <dbl>   <dbl>  <dbl>
##  1  0.773  -2.44 -0.483 -2.72   -1.22   0.828   1.34  0.0570  0.134   0.565
##  2 -0.0782 -2.42  0.413 -2.83   -0.626  0.0545  1.43 -0.120   0.457   0.159
##  3 -0.0845 -1.65 -0.241 -2.88   -0.889 -0.0275  1.16  0.0157  0.192   0.497
##  4  0.966  -2.38  0.625 -1.74   -0.845  0.950   1.09  0.820  -0.285   0.995
##  5  0.0757 -1.73  0.853  0.273  -1.84   0.328   1.25  0.771   0.0309  0.278
##  6  0.459  -2.88  0.136  0.405  -2.08   0.138   1.73  0.396   0.0458  0.352
##  7  0.0671 -1.62  0.520  0.238  -1.40   0.139   1.83 -0.305  -0.0529 -1.24 
##  8  0.0941 -1.80  0.703  0.206  -1.87   0.288   1.41  0.760  -0.0391  0.136
##  9  0.108  -1.94  0.600 -0.0511 -1.98   0.119   1.85  0.238  -0.0503 -0.253
## 10 -0.971  -2.35 -0.392 -0.141  -1.82  -0.304   1.50 -0.206   0.145  -1.57 
## # ... with 53 more rows, and 2,299 more variables: V11 <dbl>, V12 <dbl>,
## #   V13 <dbl>, V14 <dbl>, V15 <dbl>, V16 <dbl>, V17 <dbl>, V18 <dbl>,
## #   V19 <dbl>, V20 <dbl>, V21 <dbl>, V22 <dbl>, V23 <dbl>, V24 <dbl>,
## #   V25 <dbl>, V26 <dbl>, V27 <dbl>, V28 <dbl>, V29 <dbl>, V30 <dbl>,
## #   V31 <dbl>, V32 <dbl>, V33 <dbl>, V34 <dbl>, V35 <dbl>, V36 <dbl>,
## #   V37 <dbl>, V38 <dbl>, V39 <dbl>, V40 <dbl>, V41 <dbl>, V42 <dbl>,
## #   V43 <dbl>, V44 <dbl>, V45 <dbl>, V46 <dbl>, V47 <dbl>, V48 <dbl>,
## #   V49 <dbl>, V50 <dbl>, V51 <dbl>, V52 <dbl>, V53 <dbl>, V54 <dbl>,
## #   V55 <dbl>, V56 <dbl>, V57 <dbl>, V58 <dbl>, V59 <dbl>, V60 <dbl>,
## #   V61 <dbl>, V62 <dbl>, V63 <dbl>, V64 <dbl>, V65 <dbl>, V66 <dbl>,
## #   V67 <dbl>, V68 <dbl>, V69 <dbl>, V70 <dbl>, V71 <dbl>, V72 <dbl>,
## #   V73 <dbl>, V74 <dbl>, V75 <dbl>, V76 <dbl>, V77 <dbl>, V78 <dbl>,
## #   V79 <dbl>, V80 <dbl>, V81 <dbl>, V82 <dbl>, V83 <dbl>, V84 <dbl>,
## #   V85 <dbl>, V86 <dbl>, V87 <dbl>, V88 <dbl>, V89 <dbl>, V90 <dbl>,
## #   V91 <dbl>, V92 <dbl>, V93 <dbl>, V94 <dbl>, V95 <dbl>, V96 <dbl>,
## #   V97 <dbl>, V98 <dbl>, V99 <dbl>, V100 <dbl>, V101 <dbl>, V102 <dbl>,
## #   V103 <dbl>, V104 <dbl>, V105 <dbl>, V106 <dbl>, V107 <dbl>, V108 <dbl>,
## #   V109 <dbl>, V110 <dbl>, ...
svm_genes <- 
  svm(
    y ~ ., 
    data = data_genes,
    kernel = "linear",
    cost = 10
  )

summary(svm_genes)
## 
## Call:
## svm(formula = y ~ ., data = data_genes, kernel = "linear", cost = 10)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  10 
## 
## Number of Support Vectors:  58
## 
##  ( 20 20 11 7 )
## 
## 
## Number of Classes:  4 
## 
## Levels: 
##  1 2 3 4
table(predicted = svm_genes$fitted, truth = data_genes$y)
##          truth
## predicted  1  2  3  4
##         1  8  0  0  0
##         2  0 23  0  0
##         3  0  0 12  0
##         4  0  0  0 20

There are no training errors, which is not surprising since there is high dimensionality. Let’s check how the model performs on test data:

data_test_genes <- 
  as_tibble(Khan$xtest) %>% 
  mutate(y = as.factor(Khan$ytest))

pred_test_genes <- predict(svm_genes, data_test_genes)

table(predict = pred_test_genes, truth = data_test_genes$y)
##        truth
## predict 1 2 3 4
##       1 3 0 0 0
##       2 0 6 2 0
##       3 0 0 4 0
##       4 0 0 0 5

We see that using cost=10 yields two test set errors on this data.