-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_static.py
251 lines (209 loc) · 11.8 KB
/
train_static.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
## adapted from gaussian surfels
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim, cos_loss
from gaussian_renderer import render
import numpy as np
import sys
import json5
from scene import Scene, GaussianModel
import uuid
from tqdm import tqdm
from utils.image_utils import psnr, depth2rgb, normal2rgb, depth2normal, masked_psnr, resize_image
from torchvision.utils import save_image
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from utils.general_utils import find_min_numbered_subfolder
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset)
scene = Scene(dataset, gaussians, shuffle=False, resolution_scales=[1]) #[1, 2, 4])
use_mask = dataset.use_mask
gaussians.training_one_frame_s2_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
elif use_mask:
# gaussians.mask_prune(scene.getTrainCameras(), 4)
None
opt.densification_interval = max(opt.densification_interval, len(scene.getTrainCameras()))
background = torch.tensor([1, 1, 1] if dataset.white_background else [0, 0, 0], dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 2):
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
scale = 1
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras(scale).copy()[:]
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack) - 1))
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
background = torch.rand((3), dtype=torch.float32, device="cuda") if dataset.random_background else background
render_pkg = render(viewpoint_cam, gaussians, pipe, background)
image, normal, depth, opac, viewspace_point_tensor, visibility_filter, radii = \
render_pkg["render"], render_pkg["normal"], render_pkg["depth"], render_pkg["opac"], \
render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
mask_gt = viewpoint_cam.get_gtMask(use_mask)
gt_image = viewpoint_cam.get_gtImage(background, use_mask)
mask_vis = (opac.detach() > 1e-5) # rendered_mask
normal = torch.nn.functional.normalize(normal, dim=0) * mask_vis
d2n = depth2normal(depth, mask_vis, viewpoint_cam)
# Loss
Ll1 = l1_loss(image, gt_image)
loss_rgb = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
bce_loss_func = torch.nn.BCELoss()
loss_mask = bce_loss_func(opac, mask_gt)
# depth-normal consistency
loss_surface = cos_loss(normal, d2n)
opac_ = gaussians.get_opacity
opac_mask = torch.gt(opac_, 0.51) * torch.le(opac_, 0.99)
opac_ = opac_ - 0.5
loss_opac = torch.exp(-(opac_ * opac_) * 20)
loss_opac = (loss_opac * opac_mask).mean()
loss = 1 * loss_rgb
loss += 0.1 * loss_mask
loss += 0.01 * loss_opac
loss += (0.01 + 0.1 * min(2 * iteration / opt.iterations, 1)) * loss_surface
loss_dict = {
"total_loss": loss,
"loss_rgb": loss_rgb,
"loss_mask": loss_mask,
"loss_opac": loss_opac * 0.01,
"loss_surface": (0.01 + 0.1 * min(2 * iteration / opt.iterations, 1)) * loss_surface
}
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * loss_rgb.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}, Pts={len(gaussians._xyz)}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
test_background = torch.tensor([1, 1, 1] if dataset.white_background else [0, 0, 0], dtype=torch.float32, device="cuda")
training_report(tb_writer, iteration, loss_dict, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, pipe, test_background, use_mask)
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
if iteration < opt.densify_until_iter and iteration > opt.densify_from_iter:
# Keep track of max radii in image-space for pruning
gaussians.max_radii2D[visibility_filter] = torch.max(gaussians.max_radii2D[visibility_filter], radii[visibility_filter])
gaussians.add_densification_stats(viewspace_point_tensor, visibility_filter)
if iteration % opt.densification_interval == 0:
min_opac = 0.1
gaussians.adaptive_prune(min_opac, scene.cameras_extent)
gaussians.adaptive_densify(opt.densify_grad_threshold, scene.cameras_extent)
if (iteration - 1) % opt.opacity_reset_interval == 0 and opt.opacity_lr > 0:
gaussians.reset_opacity(0.12)
if (iteration - 1) % 1000 == 0:
normal_wrt = normal2rgb(normal, mask_vis)
depth_wrt = depth2rgb(depth, mask_vis)
img_wrt = torch.cat([gt_image, image, normal_wrt * opac, depth_wrt * opac], 2)
os.makedirs(os.path.join(args.output_path, f'training_output'), exist_ok=True)
save_image(img_wrt.cpu(), os.path.join(args.output_path, f'training_output/{iteration-1}.png'))
if iteration < opt.iterations:
gaussians.optimizer.step()
gaussians.optimizer.zero_grad()
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.output_path + "/chkpnt" + str(iteration) + ".pth")
def prepare_output_and_logger(args):
# Set up output folder
print("Output folder: {}".format(args.output_path))
os.makedirs(args.output_path, exist_ok = True)
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.output_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, loss_dict, l1_loss, elapsed, testing_iterations, scene : Scene, pipe, bg, use_mask):
if tb_writer:
for loss_name, loss_value in loss_dict.items():
tb_writer.add_scalar(f'train_loss_patches/{loss_name}', loss_value.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : scene.getTrainCameras()[::8]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
masked_psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
image = torch.clamp(render(viewpoint, scene.gaussians, pipe, bg)["render"], 0.0, 1.0)
gt_image = torch.clamp(viewpoint.get_gtImage(bg, with_mask=use_mask), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
masked_psnr_test += masked_psnr(image, gt_image)
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
masked_psnr_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/psnr', psnr_test, iteration)
tb_writer.add_scalar(config['name'] + '/masked_psnr', masked_psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
# log gradient scales
scale_min = scene.gaussians.get_scaling[:,:2].min().mean().item()
scale_max = scene.gaussians.get_scaling[:,:2].max().mean().item()
axis_3 = scene.gaussians.get_scaling[:,2].mean().item()
tb_writer.add_scalar('scale/min_avg', scale_min, iteration)
tb_writer.add_scalar('scale/max_avg', scale_max, iteration)
tb_writer.add_scalar('scale/3rd_axis_avg', axis_3, iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[5_000, 10_000, 15_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[15_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--config_path", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
if args.config_path is not None:
with open(args.config_path, 'r') as f:
config = json5.load(f)
for key, value in config.items():
setattr(args, key, value)
args.save_iterations.append(args.iterations)
args.source_path = find_min_numbered_subfolder(args.source_path)
args.output_path = os.path.join(args.output_path, os.path.basename(args.source_path))
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from)
print("\nTraining complete.")