Gunhee Cho and YongSuk Choi
Artificial Intelligence Lab, Hanyang University, Seoul, Korea
This repository is the official Pytorch implementation of Image Super-resolution with Unified Window Attention.
- Ubuntu 20.04 LTS
- 4 NVIDIA RTX A5000
pip3 install -r requirements.txt
- Download train dataset (DF2K/ImageNet)
- Download test dataset (Set5/Set14/BSD100/Urban100/Manga109)
torchrun --standalone --nproc_per_node=4 train.py --opt options/train_Uniwin_SRx2_ImageNet_from_scratch.json
torchrun --standalone --nproc_per_node=4 train.py --opt options/train_Uniwin_SRx3_ImageNet_from_scratch.json
torchrun --standalone --nproc_per_node=4 train.py --opt options/train_Uniwin_SRx4_ImageNet_from_scratch.json
torchrun --standalone --nproc_per_node=4 train.py --opt options/train_Uniwin_SRx2_finetune_from_ImageNet_pretrain.json
torchrun --standalone --nproc_per_node=4 train.py --opt options/train_Uniwin_SRx3_finetune_from_ImageNet_pretrain.json
torchrun --standalone --nproc_per_node=4 train.py --opt options/train_Uniwin_SRx4_finetune_from_ImageNet_pretrain.json
torchrun --standalone --nproc_per_node=4 train.py --opt options/train_Uniwin_SRx3_finetune_from_SRx2.json
torchrun --standalone --nproc_per_node=4 train.py --opt options/train_Uniwin_SRx4_finetune_from_SRx2.json
torchrun --standalone --nproc_per_node=4 train.py --opt options/train_Uniwin_SRx2_DF2K_from_scratch.json
torchrun --standalone --nproc_per_node=4 train.py --opt options/train_Uniwin_SRx2_DF2K_from_scratch.json
torchrun --standalone --nproc_per_node=4 train.py --opt options/train_Uniwin_SRx2_DF2K_from_scratch.json