-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path01-Introduction.Rmd
698 lines (519 loc) · 21.8 KB
/
01-Introduction.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
---
output:
pdf_document: default
html_document: default
---
# Probability spaces {#introduction}
This chapter deals with measures and probability spaces. At the end of the chapter, we look more closely at discrete probability spaces.
The students are expected to acquire the following knowledge:
**Theoretical**
- Use properties of probability to calculate probabilities.
- Combinatorics.
- Understanding of continuity of probability.
**R**
- Vectors and vector operations.
- For loop.
- Estimating probability with simulation.
- *sample* function.
- Matrices and matrix operations.
```{r, echo = FALSE}
togs <- T
tog_ex <- T
```
```{=html}
<style>
.fold-btn {
float: right;
margin: 5px 5px 0 0;
}
.fold {
border: 1px solid black;
min-height: 40px;
}
</style>
```
```{=html}
<script type="text/javascript">
$(document).ready(function() {
$folds = $(".fold");
$folds.wrapInner("<div class=\"fold-blck\">"); // wrap a div container around content
$folds.prepend("<button class=\"fold-btn\">Unfold Solution</button>"); // add a button
$(".fold-blck").toggle(); // fold all blocks
$(".fold-btn").on("click", function() { // add onClick event
$(this).text($(this).text() === "Fold Solution" ? "Unfold Solution" : "Fold Solution"); // if the text equals "Fold", change it to "Unfold"or else to "Fold"
$(this).next(".fold-blck").toggle("linear"); // "swing" is the default easing function. This can be further customized in its speed or the overall animation itself.
})
});
</script>
```
## Measure and probability spaces
```{exercise, name = "Completing a set to a sigma algebra"}
Let $\Omega = \{1,2,...,10\}$ and let $A = \{\emptyset, \{1\}, \{2\}, \Omega \}$.
a. Show that $A$ is not a sigma algebra of $\Omega$.
b. Find the minimum number of elements to complete A to a sigma algebra of
$\Omega$.
```
::: fold
```{solution, echo = tog_ex}
a. $1^c = \{2,3,...,10\} \notin A \implies$ $A$ is not sigma algebra.
b. First we need the complements of all elements, so we need to add sets
$\{2,3,...,10\}$ and $\{1,3,4,...,10\}$. Next we need unions of all sets --
we add the set $\{1,2\}$. Again we need the complement of this set, so we add
$\{3,4,...,10\}$. So the minimum number of elements we need to add is 4.
```
:::
```{exercise, name = "Diversity of sigma algebras"}
Let $\Omega$ be a set.
a. Find the smallest sigma algebra of $\Omega$.
b. Find the largest sigma algebra of $\Omega$.
```
::: fold
```{solution, echo = togs}
a. $A = \{\emptyset, \Omega\}$
b. $2^{\Omega}$
```
:::
```{exercise}
Find all sigma algebras for $\Omega = \{0, 1, 2\}$.
```
::: fold
```{solution, echo = togs}
- $A = \{\emptyset, \Omega\}$
- $A = 2^{\Omega}$
- $A = \{\emptyset, \{0\}, \{1,2\}, \Omega\}$
- $A = \{\emptyset, \{1\}, \{0,2\}, \Omega\}$
- $A = \{\emptyset, \{2\}, \{0,1\}, \Omega\}$
```
:::
```{exercise, name = "Difference between algebra and sigma algebra"}
Let $\Omega = \mathbb{N}$ and $\mathcal{A} = \{A \subseteq \mathbb{N}:
A \text{ is finite or } A^c \text{ is finite.} \}$. Show that
$\mathcal{A}$ is an algebra but not a sigma algebra.
```
::: fold
```{solution, echo = togs}
- $\emptyset$ is finite so $\emptyset \in \mathcal{A}$.
- Let $A \in \mathcal{A}$ and $B \in \mathcal{A}$. If both are finite, then
their union is also finite and therefore in $\mathcal{A}$. Let at least
one of them not
be finite. Then their union is not finite. But $(A \cup B)^c = A^c \cap B^c$.
And since at least one is infinite, then its complement is finite and the
intersection is too. So finite unions are in $\mathcal{A}$.
- Let us look at numbers $2n$. For any $n$, $2n \in \mathcal{A}$
as it is finite. But $\bigcup_{k = 1}^{\infty} 2n \notin \mathcal{A}$.
```
:::
```{exercise, label = saequivalence}
We define $\sigma(X) = \cap_{\lambda \in I} S_\lambda$ to be a sigma algebra, generated by the set $X$, where $S_\lambda$ are all sigma algebras such that $X \subseteq S_\lambda$.
$S_\lambda$ are indexed by $\lambda \in I$.
Let $A, B \subseteq 2^{\Omega}$.
Prove that $\sigma(A) = \sigma(B) \iff A \subseteq \sigma(B) \land B \subseteq \sigma(A)$.
```
::: fold
```{solution, echo = togs}
To prove the equivalence, we need to prove that the left hand side implies the right hand side and vice versa.
Proving $\sigma(A) = \sigma(B) \Rightarrow A \subseteq \sigma(B) \land B \subseteq \sigma(A)$:
we know $A \subseteq \sigma(A)$ is always true, so by substituting in $\sigma(B)$ from the left hand side equality we obtain $A \subseteq \sigma(B)$.
We obtain $B \subseteq \sigma(A)$ by symmetry.
This proves the implication.
Proving $A \subseteq \sigma(B) \land B \subseteq \sigma(A) \Rightarrow \sigma(A) = \sigma(B)$:
by definition of a sigma algebra, generated by a set, we have $\sigma(B) = \cap_{\lambda \in I} S_\lambda$ where $S_\lambda$ are all sigma algebras where $B \subseteq S_\lambda$.
But $\sigma(A)$ is one of $S_\lambda$, so we can write $\sigma(B) = \sigma(A) \cap \left(\cap_{\lambda \in I} S_\lambda \right)$, which implies $\sigma(B) \subseteq \sigma(A)$.
By symmetry, we have $\sigma(A) \subseteq \sigma(B)$.
Since $\sigma(A) \subseteq \sigma(B)$ and $\sigma(B) \subseteq \sigma(A)$, we obtain $\sigma(A) = \sigma(B)$, which proves the implication and completes the equivalence proof.
```
:::
```{exercise, name = "Intersection of sigma algebra and a set"}
This exercise is adapted from Guy Lebanon, *Probability: The Analysis of Data, Volume 1* (2012).
Let $C$ be a $\sigma$-algebra over $\Omega$ and $U \subset \Omega$.
Prove that $C^\prime = \{c \cap U | c \in C\}$ is a $\sigma$-algebra over $U$.
```
::: fold
```{solution, echo = togs}
The empty set is an element of $C^\prime$. We see this by partitioning $C^\prime$ into a subset without the empty set and a subset containing the empty set exclusively:
$$
C^\prime = \{c \cap U | c \in C\} = \{c \cap U | c \in C \setminus \emptyset \} \cup \{ c \cap U | c \in \{ \emptyset \} \} = \{c \cap U | c \in C \setminus \emptyset \} \cup \{\emptyset\}.
$$
Suppose $B \in C^\prime$. We verify that $B^c \in C^\prime$. $B \in C^\prime \Rightarrow B = c \cap U$ for some $c \in C^\prime$. Also note that $B^c = U \cap B^c$ since we consider $U$ our universal set. We then have
$$
B^c = U \cap B^c = U \cap (c \cap U)^c = U \cap (c^c \cup U^c) = (U \cap c^c) \cup (U \cap U^c) = (U \cap c^c) \cup \emptyset = (U \cap c^c).
$$
Now notice that $c^c \in C$ because $c \in C$ and $C$ is a $\sigma$-algebra.
But this means that $c^c \cap U \in C^\prime$ by definition of $C^\prime$.
This is the same as saying $B^c \in C^\prime$, which proves the complements property.
Suppose $B_n = C_n \cap U$ and $\{C_n \cap U\}_{n \in \mathbb{N}}$ is a sequence of sets in $C^\prime$. Then $\cup_{n \in \mathbb{N}}C_n \in C$. It follows that:
$$
\cup_{n \in \mathbb{N}} B_n = \cup_{n \in \mathbb{N}} (U \cap C_n) = (\cup_{n \in \mathbb{N}}C_n) \cap U \in C^\prime,
$$
because the final union is in $C$. This proves the countable union property.
```
:::
```{exercise, name = "Intro to measure"}
Take the measurable space $\Omega = \{1,2\}$, $F = 2^{\Omega}$. Which of the
following is a measure? Which is a probability measure?
a. $\mu(\emptyset) = 0$, $\mu(\{1\}) = 5$, $\mu(\{2\}) = 6$, $\mu(\{1,2\}) = 11$
b. $\mu(\emptyset) = 0$, $\mu(\{1\}) = 0$, $\mu(\{2\}) = 0$, $\mu(\{1,2\}) = 1$
c. $\mu(\emptyset) = 0$, $\mu(\{1\}) = 0$, $\mu(\{2\}) = 0$, $\mu(\{1,2\}) = 0$
d. $\mu(\emptyset) = 0$, $\mu(\{1\}) = 0$, $\mu(\{2\}) = 1$, $\mu(\{1,2\}) = 1$
e. $\mu(\emptyset)=0$, $\mu(\{1\})=0$, $\mu(\{2\})=\infty$, $\mu(\{1,2\})=\infty$
```
::: fold
```{solution, echo = tog_ex}
a. Measure. Not probability measure since $\mu(\Omega) > 1$.
b. Neither due to countable additivity.
c. Measure. Not probability measure since $\mu(\Omega) = 0$.
d. Probability measure.
e. Measure. Not probability measure since $\mu(\Omega) > 1$.
```
:::
```{exercise}
Define a probability space that could be used to model the outcome of throwing two fair 6-sided dice.
```
::: fold
```{solution, echo = togs}
- $\Omega = \{\{i,j\}, i = 1,...,6, j = 1,...,6\}$
- $F = 2^{\Omega}$
- $\forall \omega \in \Omega$, $P(\omega) = \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$
```
:::
## Properties of probability measures
```{exercise}
A standard deck (52 cards) is distributed to two persons: 26 cards to each
person. All partitions are equally likely. Find the probability that:
a. The first person gets 4 Queens.
b. The first person gets at least 2 Queens.
c. <span style="color:blue"> R: Use simulation (_sample_) to check the above
answers. </span>
```
::: fold
```{solution, echo = togs}
a. $\frac{\binom{48}{22}}{\binom{52}{26}}$
b. 1 - $\frac{\binom{48}{26} + 4 \times \binom{48}{25}}{\binom{52}{26}}$
c. For the simulation, let us represent cards with numbers from 1 to 52, and
let 1 through 4 represent Queens.
```
```{r, echo = togs, eval = togs}
set.seed(1)
cards <- 1:52
n <- 10000
q4 <- vector(mode = "logical", length = n)
q2 <- vector(mode = "logical", length = n)
tmp <- vector(mode = "logical", length = n)
for (i in 1:n) {
p1 <- sample(1:52, 26)
q4[i] <- sum(1:4 %in% p1) == 4
q2[i] <- sum(1:4 %in% p1) >= 2
}
sum(q4) / n
sum(q2) / n
```
:::
```{exercise}
Let $A$ and $B$ be events with probabilities $P(A) = \frac{2}{3}$ and
$P(B) = \frac{1}{2}$.
a. Show that $\frac{1}{6} \leq P(A\cap B) \leq \frac{1}{2}$,
and give examples to show that both extremes are possible.
b. Find corresponding bounds for $P(A\cup B)$.
c. <span style="color:blue"> R: Draw samples from the examples and show the probability bounds of
$P(A \cap B)$ </span>.
```
::: fold
```{solution, echo = togs}
- From the properties of probability we have
\begin{equation}
P(A \cup B) = P(A) + P(B) - P(A \cap B) \leq 1.
\end{equation}
From this follows
\begin{align}
P(A \cap B) &\geq P(A) + P(B) - 1 \\
&= \frac{2}{3} + \frac{1}{2} - 1 \\
&= \frac{1}{6},
\end{align}
which is the lower bound for the intersection. Conversely, we have
\begin{equation}
P(A \cup B) = P(A) + P(B) - P(A \cap B) \geq P(A).
\end{equation}
From this follows
\begin{align}
P(A \cap B) &\leq P(B) \\
&= \frac{1}{2},
\end{align}
which is the upper bound for the intersection.
For an example take a fair die. To achieve the lower bound let $A = \{3,4,5,6\}$
and $B = \{1,2,3\}$, then their intersection is $A \cap B = \{3\}$. To
achieve the upper bound take $A = \{1,2,3,4\}$ and $B = \{1,2,3\} $.
- For the bounds of the union we will use the results from the first part.
Again from the properties of probability we have
\begin{align}
P(A \cup B) &= P(A) + P(B) - P(A \cap B) \\
&\geq P(A) + P(B) - \frac{1}{2} \\
&= \frac{2}{3}.
\end{align}
Conversely
\begin{align}
P(A \cup B) &= P(A) + P(B) - P(A \cap B) \\
&\leq P(A) + P(B) - \frac{1}{6} \\
&= 1.
\end{align}
Therefore $\frac{2}{3} \leq P(A \cup B) \leq 1$.
- We use _sample_ in R:
```
```{r, echo = togs, eval = togs}
set.seed(1)
n <- 10000
samps <- sample(1:6, n, replace = TRUE)
# lower bound
lb <- vector(mode = "logical", length = n)
A <- c(1,2,3)
B <- c(3,4,5,6)
for (i in 1:n) {
lb[i] <- samps[i] %in% A & samps[i] %in% B
}
sum(lb) / n
# upper bound
ub <- vector(mode = "logical", length = n)
A <- c(1,2,3)
B <- c(1,2,3,4)
for (i in 1:n) {
ub[i] <- samps[i] %in% A & samps[i] %in% B
}
sum(ub) / n
```
:::
```{exercise}
A fair coin is tossed repeatedly.
a. Show that, with probability one, a head turns up sooner or later.
b. Show similarly that any given finite sequence of heads and
tails occurs eventually with probability one.
```
::: fold
```{solution, echo = tog_ex}
\begin{align}
P(\text{no heads}) &= \lim_{n \rightarrow \infty} P(\text{no heads in first }n
\text{ tosses}) \\
&= \lim_{n \rightarrow \infty} \frac{1}{2^n} \\
&= 0.
\end{align}
For the second part, let us fix the given sequence of heads and tails of length
$k$ as $s$. A probability that this happens in $k$ tosses is $\frac{1}{2^k}$.
\begin{align}
P(s \text{ occurs}) &= \lim_{n \rightarrow \infty} P(s \text{ occurs in first }
nk \text{ tosses})
\end{align}
The right part of the upper equation is greater than if $s$ occurs either in the
first $k$ tosses, second $k$ tosses,..., $n$-th $k$ tosses. Therefore
\begin{align}
P(s \text{ occurs}) &\geq \lim_{n \rightarrow \infty}
P(s \text{ occurs in first } n \text{ disjoint sequences of length } k) \\
&= \lim_{n \rightarrow \infty}
(1 - P(s \text{ does not occur in first } n \text{ disjoint sequences})) \\
&= 1 - \lim_{n \rightarrow \infty} P(s \text{ does not occur in first } n \text{ disjoint sequences}) \\
&= 1 - \lim_{n \rightarrow \infty} (1 - \frac{1}{2^k})^n \\
&= 1.
\end{align}
```
:::
```{exercise}
An Erdos-Renyi random graph $G(n,p)$ is a model with $n$ nodes, where
each pair of nodes is connected with probability $p$.
a. Calculate the probability that there exists a node that is not
connected to any other node in $G(4,0.6)$.
b. Show that the upper bound for the probability that there exist 2 nodes that are not connected to any other node for an arbitrary $G(n,p)$ is $\binom{n}{2} (1-p)^{2n - 3}$.
c. <span style="color:blue">R: Estimate the probability from the first point using simulation.</span>
```
::: fold
```{solution, echo = togs}
a. Let $A_i$ be the event that the $i$-th node is not connected to
any other node. Then our goal is to calculate $P(\cup_{i=1}^n A_i)$.
Using the inclusion-exclusion principle, we get
\begin{align}
P(\cup_{i=1}^n A_i) &= \sum_i A_i - \sum_{i<j} P(A_i \cap A_j) +
\sum_{i<j<k} P(A_i \cap A_j \cap A_k) - P(A_1 \cap A_2 \cap A_3 \cap A_4) \\
&=4 (1 - p)^3 - \binom{4}{2} (1 - p)^5 +
\binom{4}{3} (1 - p)^6 - (1 - p)^6 \\
&\approx 0.21.
\end{align}
b. Let $A_{ij}$ be the event that nodes $i$ and $j$ are not connected to any other node. We are interested in $P(\cup_{i<j}A_{ij})$. By using Boole`s inequality, we get
\begin{align}
P(\cup_{i<j}A_{ij}) \leq \sum_{i<j} P(A_{ij}).
\end{align}
What is the probability of $A_{ij}$? There need to be no connections to the $i$-th node to the remaining nodes (excluding $j$), the same for the $j$-th node, and there can be no connection between them. Therefore
\begin{align}
P(\cup_{i<j}A_{ij}) &\leq \sum_{i<j} (1 - p)^{2(n-2) + 1} \\
&= \binom{n}{2} (1 - p)^{2n - 3}.
\end{align}
```
```{r, echo = togs, eval = togs}
set.seed(1)
n_samp <- 100000
n <- 4
p <- 0.6
conn_samp <- vector(mode = "logical", length = n_samp)
for (i in 1:n_samp) {
tmp_mat <- matrix(data = 0, nrow = n, ncol = n)
samp_conn <- sample(c(0,1),
choose(4,2),
replace = TRUE,
prob = c(1 - p, p))
tmp_mat[lower.tri(tmp_mat)] <- samp_conn
tmp_mat[upper.tri(tmp_mat)] <- t(tmp_mat)[upper.tri(t(tmp_mat))]
not_conn <- apply(tmp_mat, 1, sum)
if (any(not_conn == 0)) {
conn_samp[i] <- TRUE
} else {
conn_samp[i] <- FALSE
}
}
sum(conn_samp) / n_samp
```
:::
## Discrete probability spaces
```{exercise, label = binomialpmf}
Show that the standard measurable space on $\Omega = \{0,1,...,n\}$ equipped with binomial measure is a discrete probability space.
a. Define another probability measure on this measurable space.
b. Show that for $n=1$ the binomial measure is the same as the Bernoulli measure.
c. <span style="color:blue">R: Draw 1000 samples from the binomial distribution $p=0.5$, $n=20$ (_rbinom_) and compare relative frequencies with theoretical probability measure</span>.
```
::: fold
```{solution, echo = tog_ex}
We need to show that the terms of
$\sum_{k=0}^n \binom{n}{k} p^k (1 - p)^{n - k}$ sum to 1. For that we use the
binomial theorem $\sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = (x + y)^n$. So
\begin{equation}
\sum_{k=0}^n \binom{n}{k} p^k (1 - p)^{n - k} = (p + 1 - p)^n = 1.
\end{equation}
- $P(\{k\}) = \frac{1}{n + 1}$.
- When $n=1$ then $k \in \{0,1\}$. Inserting $n=1$ into the binomial measure,
we get $\binom{1}{k}p^k (1-p)^{1 - k}$. Now
$\binom{1}{1} = \binom{1}{0} = 1$, so the measure is $p^k (1-p)^{1 - k}$,
which is the Bernoulli measure.
```
```{r, echo = tog_ex, message = FALSE, warning=FALSE, eval = tog_ex}
set.seed(1)
library(ggplot2)
library(dplyr)
bin_samp <- rbinom(n = 1000, size = 20, prob = 0.5)
bin_samp <- data.frame(x = bin_samp) %>%
count(x) %>%
mutate(n = n / 1000, type = "empirical_frequencies") %>%
bind_rows(data.frame(x = 0:20, n = dbinom(0:20, size = 20, prob = 0.5), type = "theoretical_measure"))
bin_plot <- ggplot(data = bin_samp, aes(x = x, y = n, fill = type)) +
geom_bar(stat="identity", position = "dodge")
plot(bin_plot)
```
:::
```{exercise, label = geopoispmf}
Show that the standard measurable space on $\Omega = \{0,1,...,\infty\}$
a. equipped with geometric measure is a discrete probability space,
b. equipped with Poisson measure is a discrete probability space.
c. Define another probability measure on this measurable space.
d. <span style="color:blue">R: Draw 1000 samples from the Poisson distribution $\lambda = 10$ (_rpois_) and compare relative frequencies with theoretical probability measure</span>.
```
::: fold
```{solution, echo = togs}
a. $\sum_{k = 0}^{\infty} p(1 - p)^k = p \sum_{k = 0}^{\infty} (1 - p)^k =
p \frac{1}{1 - 1 + p} = 1$. We used the formula for geometric series.
b. $\sum_{k = 0}^{\infty} \frac{\lambda^k e^{-\lambda}}{k!} =
e^{-\lambda} \sum_{k = 0}^{\infty} \frac{\lambda^k}{k!} =
e^{-\lambda} e^{\lambda} = 1.$ We used the Taylor expansion of
the exponential function.
c. Since we only have to define a probability
measure, we could only assign probabilities that sum to one to a finite
number of events in $\Omega$, and probability zero to the other infinite
number of events. However to make this solution more educational, we will
try to find a measure that assigns a non-zero probability to all events in
$\Omega$. A good start for this would be to find a converging infinite series,
as the probabilities will have to sum to one. One simple converging series is
the geometric series $\sum_{k=0}^{\infty} p^k$ for $|p| < 1$. Let us choose an
arbitrary $p = 0.5$. Then $\sum_{k=0}^{\infty} p^k = \frac{1}{1 - 0.5} = 2$.
To complete the measure, we have to normalize it, so it sums to one,
therefore $P(\{k\}) = \frac{0.5^k}{2}$ is a probability measure on $\Omega$.
We could make it even more difficult by making this measure dependent
on some parameter $\alpha$, but this is out of the scope of this introductory
chapter.
```
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
set.seed(1)
pois_samp <- rpois(n = 1000, lambda = 10)
pois_samp <- data.frame(x = pois_samp) %>%
count(x) %>%
mutate(n = n / 1000, type = "empirical_frequencies") %>%
bind_rows(data.frame(x = 0:25, n = dpois(0:25, lambda = 10), type = "theoretical_measure"))
pois_plot <- ggplot(data = pois_samp, aes(x = x, y = n, fill = type)) +
geom_bar(stat="identity", position = "dodge")
plot(pois_plot)
```
:::
```{exercise}
a. Define a probability measure on $(\Omega = \mathbb{Z}, 2^{\mathbb{Z}})$.
b. Define a probability measure such that $P(\omega) > 0, \forall \omega \in \Omega$.
c. <span style="color:blue">R: Implement a random generator that will generate
samples with the relative frequency that corresponds to your probability
measure. Compare relative frequencies with theoretical probability
measure </span>.
```
::: fold
```{solution, echo = togs}
a. $P(0) = 1, P(\omega) = 0, \forall \omega \neq 0$.
b. $P(\{k\}) = \sum_{k = -\infty}^{\infty} \frac{p(1 - p)^{|k|}}{2^{1 - 1_0(k)}}$,
where $1_0(k)$ is the indicator function, which equals to one if $k$ is 0, and
equals to zero in every other case.
```
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
n <- 1000
geom_samps <- rgeom(n, prob = 0.5)
sign_samps <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
geom_samps[sign_samps] <- -geom_samps[sign_samps]
my_pmf <- function (k, p) {
indic <- rep(1, length(k))
indic[k == 0] <- 0
return ((p * (1 - p)^(abs(k))) / 2^indic)
}
geom_samps <- data.frame(x = geom_samps) %>%
count(x) %>%
mutate(n = n / 1000, type = "empirical_frequencies") %>%
bind_rows(data.frame(x = -10:10, n = my_pmf(-10:10, 0.5), type = "theoretical_measure"))
geom_plot <- ggplot(data = geom_samps, aes(x = x, y = n, fill = type)) +
geom_bar(stat="identity", position = "dodge")
plot(geom_plot)
```
:::
```{exercise}
Define a probability measure on $\Omega = \{1,2,3,4,5,6\}$ with parameter $m
\in \{1,2,3,4,5,6\}$, so that the probability of outcome at distance $1$ from
$m$ is half of the probability at distance $0$, at distance $2$ is half of
the probability at distance $1$, etc. <span style="color:blue">R:
Implement a random generator that will generate
samples with the relative frequency that corresponds to your probability
measure. Compare relative frequencies with theoretical probability
measure </span>.
```
::: fold
```{solution, echo = togs}
- $P(\{k\}) = \frac{\frac{1}{2}^{|m - k|}}{\sum_{i=1}^6 \frac{1}{2}^{|m - i|}}$
```
```{r, echo = togs, message = FALSE, warning=FALSE, eval = togs}
n <- 10000
m <- 4
my_pmf <- function (k, m) {
denom <- sum(0.5^abs(m - 1:6))
return (0.5^abs(m - k) / denom)
}
samps <- c()
for (i in 1:n) {
a <- sample(1:6, 1)
a_val <- my_pmf(a, m)
prob <- runif(1)
if (prob < a_val) {
samps <- c(samps, a)
}
}
samps <- data.frame(x = samps) %>%
count(x) %>%
mutate(n = n / length(samps), type = "empirical_frequencies") %>%
bind_rows(data.frame(x = 1:6, n = my_pmf(1:6, m), type = "theoretical_measure"))
my_plot <- ggplot(data = samps, aes(x = x, y = n, fill = type)) +
geom_bar(stat="identity", position = "dodge")
plot(my_plot)
```
:::