-
Notifications
You must be signed in to change notification settings - Fork 80
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #495 from Anu-Ra-g/fast_grib_doc
Added a new documentation page for faster GRIB aggregations
- Loading branch information
Showing
2 changed files
with
225 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,224 @@ | ||
Aggregation special cases | ||
============================= | ||
|
||
As we have already seen in this `page <https://fsspec.github.io/kerchunk/test_example.html#multi-file-jsons>`_, | ||
that the main purpose of ``kerchunk`` it to generate references, to view whole archive | ||
of files like GRIB2, NetCDF etc, allowing us for direct access to the data. In | ||
this part of the documentation, we will see some other efficient ways of | ||
combining references. | ||
|
||
GRIB Aggregations | ||
----------------- | ||
|
||
This reference aggregation method of GRIB files, developed by `Camus Energy <https://www.camus.energy>`_, | ||
and it functions if accompanying ``.idx`` files are present. It involves creating a reference index | ||
for every GRIB message across the files that we want to aggregate. | ||
|
||
**But this procedure has some certain restrictions:** | ||
|
||
- GRIB files must paired with their ``.idx`` files | ||
- The ``.idx`` file must be of *text* type. | ||
- Only specialised for time-series data, where GRIB files | ||
have *identical* structure. | ||
- Each horizon(forecast time) must be indexed separately. | ||
|
||
|
||
Utilizing this method can significantly reduce the time required to combine | ||
references, cutting it down to a fraction of the previous duration. The original | ||
idea was showcased in this `talk <https://discourse.pangeo.io/t/pangeo-showcase-optimizations-for-kerchunk-aggregation-and-zarr-i-o-at-scale-for-machine-learning/4074>`_. | ||
It follows a three step approach. | ||
|
||
**Three step approach:** | ||
|
||
1. Extract and persist metadata directly from a few arbitrary grib | ||
files for a given product such as HRRR SUBH, GEFS, GFS etc. | ||
2. Use the metadata mapping to build an index table of every grib | ||
message from the ``.idx`` files | ||
3. Combine the index data with the metadata to build any FMRC | ||
slice (Horizon, RunTime, ValidTime, BestAvailable) | ||
|
||
|
||
*How is it faster* | ||
|
||
The ``.idx`` file otherwise known as an *index* file contains the key | ||
metadata of the messages in the GRIB files. These metadata include `index`, `offset`, `datetime`, | ||
`variable` and `forecast time` for their respective messages. This metadata | ||
will be used to index every GRIB message. By following this approach, we only have to | ||
``scan_grib`` a single GRIB file, not the whole archive. | ||
|
||
Building the index of a time horizon, first requires a single one-to-one mapping of GRIB/Zarr | ||
metadata to the attributes in the idx file. Only constraint is the mapping needs to be | ||
made from a single GRIB file, belonging to the *same time horizon*. The indexing process | ||
primarily involves the `pandas <https://pandas.pydata.org/>`_ library. To confirm this, | ||
see this `notebook <https://gist.github.com/Anu-Ra-g/efa01ad1c274c1bd1c14ee01666caa77>`_. | ||
After indexing a single time horizon, you can combine this index with indexes of | ||
other time horizon and store it. | ||
|
||
.. note:: | ||
The index in ``.idx`` file indexes the GRIB messages where as the ``k_index`` | ||
(kerchunk index), index the variables | ||
in those messages. | ||
|
||
The table mentioned below is a *k_index* made from a single GRIB file. | ||
|
||
.. list-table:: k_index for a single GRIB file | ||
:header-rows: 1 | ||
:widths: 5 10 15 10 20 15 10 20 20 30 10 10 10 | ||
|
||
* - | ||
- varname | ||
- typeOfLevel | ||
- stepType | ||
- name | ||
- step | ||
- level | ||
- time | ||
- valid_time | ||
- uri | ||
- offset | ||
- length | ||
- inline_value | ||
* - 0 | ||
- gh | ||
- isobaricInhPa | ||
- instant | ||
- Geopotential height | ||
- 0 days 06:00:00 | ||
- 0.0 | ||
- 2017-01-01 06:00:00 | ||
- 2017-01-01 12:00:00 | ||
- s3://noaa-gefs-pds/gefs.20170101/06/gec00.t06z... | ||
- 0 | ||
- 47493 | ||
- None | ||
* - 1 | ||
- t | ||
- isobaricInhPa | ||
- instant | ||
- Temperature | ||
- 0 days 06:00:00 | ||
- 0.0 | ||
- 2017-01-01 06:00:00 | ||
- 2017-01-01 12:00:00 | ||
- s3://noaa-gefs-pds/gefs.20170101/06/gec00.t06z... | ||
- 47493 | ||
- 19438 | ||
- None | ||
* - 2 | ||
- r | ||
- isobaricInhPa | ||
- instant | ||
- Relative humidity | ||
- 0 days 06:00:00 | ||
- 0.0 | ||
- 2017-01-01 06:00:00 | ||
- 2017-01-01 12:00:00 | ||
- s3://noaa-gefs-pds/gefs.20170101/06/gec00.t06z... | ||
- 66931 | ||
- 10835 | ||
- None | ||
* - 3 | ||
- u | ||
- isobaricInhPa | ||
- instant | ||
- U component of wind | ||
- 0 days 06:00:00 | ||
- 0.0 | ||
- 2017-01-01 06:00:00 | ||
- 2017-01-01 12:00:00 | ||
- s3://noaa-gefs-pds/gefs.20170101/06/gec00.t06z... | ||
- 77766 | ||
- 22625 | ||
- None | ||
* - 4 | ||
- v | ||
- isobaricInhPa | ||
- instant | ||
- V component of wind | ||
- 0 days 06:00:00 | ||
- 0.0 | ||
- 2017-01-01 06:00:00 | ||
- 2017-01-01 12:00:00 | ||
- s3://noaa-gefs-pds/gefs.20170101/06/gec00.t06z... | ||
- 100391 | ||
- 20488 | ||
- None | ||
|
||
|
||
*What now* | ||
|
||
After creating the k_index as per the desired duration, we will use the ``DataTree`` model | ||
from the `xarray-datatree <https://xarray-datatree.readthedocs.io/en/latest/>`_ to view a | ||
part(desired variables) or the whole of the aggregation, using the k_index. Below is a | ||
tree model made from an aggregation of GRIB files produced from **GEFS** model hosted | ||
in AWS S3 bucket. | ||
|
||
.. code-block:: bash | ||
DataTree('None', parent=None) | ||
├── DataTree('prmsl') | ||
│ │ Dimensions: () | ||
│ │ Data variables: | ||
│ │ *empty* | ||
│ │ Attributes: | ||
│ │ name: Pressure reduced to MSL | ||
│ └── DataTree('instant') | ||
│ │ Dimensions: () | ||
│ │ Data variables: | ||
│ │ *empty* | ||
│ │ Attributes: | ||
│ │ stepType: instant | ||
│ └── DataTree('meanSea') | ||
│ Dimensions: (latitude: 181, longitude: 360, time: 1, step: 1, | ||
│ model_horizons: 1, valid_times: 237) | ||
│ Coordinates: | ||
│ * latitude (latitude) float64 1kB 90.0 89.0 88.0 87.0 ... -88.0 -89.0 -90.0 | ||
│ * longitude (longitude) float64 3kB 0.0 1.0 2.0 3.0 ... 357.0 358.0 359.0 | ||
│ meanSea float64 8B ... | ||
│ number (time, step) int64 8B ... | ||
│ step (model_horizons, valid_times) timedelta64[ns] 2kB ... | ||
│ time (model_horizons, valid_times) datetime64[ns] 2kB ... | ||
│ valid_time (model_horizons, valid_times) datetime64[ns] 2kB ... | ||
│ Dimensions without coordinates: model_horizons, valid_times | ||
│ Data variables: | ||
│ prmsl (model_horizons, valid_times, latitude, longitude) float64 124MB ... | ||
│ Attributes: | ||
│ typeOfLevel: meanSea | ||
└── DataTree('ulwrf') | ||
│ Dimensions: () | ||
│ Data variables: | ||
│ *empty* | ||
│ Attributes: | ||
│ name: Upward long-wave radiation flux | ||
└── DataTree('avg') | ||
│ Dimensions: () | ||
│ Data variables: | ||
│ *empty* | ||
│ Attributes: | ||
│ stepType: avg | ||
└── DataTree('nominalTop') | ||
Dimensions: (latitude: 181, longitude: 360, time: 1, step: 1, | ||
model_horizons: 1, valid_times: 237) | ||
Coordinates: | ||
* latitude (latitude) float64 1kB 90.0 89.0 88.0 87.0 ... -88.0 -89.0 -90.0 | ||
* longitude (longitude) float64 3kB 0.0 1.0 2.0 3.0 ... 357.0 358.0 359.0 | ||
nominalTop float64 8B ... | ||
number (time, step) int64 8B ... | ||
step (model_horizons, valid_times) timedelta64[ns] 2kB ... | ||
time (model_horizons, valid_times) datetime64[ns] 2kB ... | ||
valid_time (model_horizons, valid_times) datetime64[ns] 2kB ... | ||
Dimensions without coordinates: model_horizons, valid_times | ||
Data variables: | ||
ulwrf (model_horizons, valid_times, latitude, longitude) float64 124MB ... | ||
Attributes: | ||
typeOfLevel: nominalTop | ||
.. tip:: | ||
For a full tutorial on this workflow, refer this `kerchunk cookbook <https://projectpythia.org/kerchunk-cookbook/README.html>`_ | ||
in `Project Pythia <https://projectpythia.org/>`_. | ||
|
||
.. raw:: html | ||
|
||
<script data-goatcounter="https://kerchunk.goatcounter.com/count" | ||
async src="//gc.zgo.at/count.js"></script> |