forked from IntrAnatSEEGSoftware/IntrAnat
-
Notifications
You must be signed in to change notification settings - Fork 1
/
locateContacts.py
572 lines (534 loc) · 26.1 KB
/
locateContacts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import math
import pdb
from scipy import ndimage
from numpy import *
from soma import aims
def norme3D(vect):
return math.sqrt(vect[0]**2+vect[1]**2+vect[2]**2)
def vecteur(a,b):
return (b[0]-a[0],b[1]-a[1],b[2]-a[2])
def findMoyMax(npCT,sizex,sizey,sizez,volCT,entry,d,s1n,coteRegionX,coteRegionY,coteRegionZ,CT):
#initialization of variables
maxi=0
inc=0
if CT==True:
compX1=s1n[0]/sizex-coteRegionX
compX2=s1n[0]/sizex+coteRegionX
compY1=s1n[1]/sizey-coteRegionY
compY2=s1n[1]/sizey+coteRegionY
compZ1=s1n[2]/sizez-coteRegionZ
compZ2=s1n[2]/sizez+coteRegionZ
if compZ1 <=0:
compZ1=0
if compY1 <=0:
compY1=0
if compX1 <=0:
compX1=0
if compX2>= len(npCT[0][0])-1:
compX2= len(npCT[0][0])-1
if compY2>= len(npCT[0][0])-1:
compY2= len(npCT[0][0])-1
if compZ2>= len(npCT[0][0])-1:
compZ2= len(npCT[0][0])-1
else:
compX1=s1n[0]-coteRegionX
compX2=s1n[0]+coteRegionX
compY1=s1n[1]-coteRegionY
compY2=s1n[1]+coteRegionY
compZ1=s1n[2]-coteRegionZ
compZ2=s1n[2]+coteRegionZ
if compZ1 <=0:
compZ1=0
if compY1 <=0:
compY1=0
if compX1 <=0:
compX1=0
if compX2>= len(npCT[0][0])-1:
compX2= len(npCT[0][0])-1
if compY2>= len(npCT[0][0])-1:
compY2= len(npCT[0][0])-1
if compZ2>= len(npCT[0][0])-1:
compZ2= len(npCT[0][0])-1
print "compX1",compX1,"compX2",compX2,"compY1",compY1,"compY2",compY2,"compZ1",compZ1,"compZ2",compZ2
#we will do the computation until we find a value higher than 1500
while maxi==0 and inc<1000:
#print "compX1",compX1,"compX2",compX2,"compY1",compY1,"compY2",compY2,"compZ1",compZ1,"compZ2",compZ2
#computation in a CT
if CT==True:
#we take out any values less than 2500
newnpCT=npCT[0,round(compZ1):round(compZ2),round(compY1):round(compY2),round(compX1):round(compX2)]
newnpCT=newnpCT.clip(1500)
newnpCT[newnpCT==1500]=0
#We make an opening
CTopened=ndimage.grey_opening(newnpCT, size=(int(round(1.4/sizez)),int(round(1.4/sizey)),int(round(1.4/sizex)))) #en mm ca soit isotropic
newnpCT=npCT[0,round(compZ1):round(compZ2),round(compY1):round(compY2),round(compX1):round(compX2)]
newnpCT=newnpCT.clip(1500)
newnpCT[newnpCT==1500]=0
else:
#we take out any values above 50
newnpCT=npCT[0,round(compZ1):round(compZ2),round(compY1):round(compY2),round(compX1):round(compX2)]
newnpCT=newnpCT.clip(0,50)
newnpCT[newnpCT==50]=0
#We make an opening
CTopened=ndimage.grey_opening(newnpCT, size=(int(round(1.4/sizez)),int(round(1.4/sizey)),int(round(1.4/sizex)))) #en mm ca soit isotropic
newnpCT=npCT[0,round(compZ1):round(compZ2),round(compY1):round(compY2),round(compX1):round(compX2)]
newnpCT=newnpCT.clip(0,100)
newnpCT[newnpCT==100]=0
try:
maxi=CTopened.max()
except:
pdb.set_trace()
#if the opening was too strong and didn't keep any values but the original array had value>1500 we keep the newnpCT (original one)
if maxi==0 and newnpCT.max()!=0:
CTopened=newnpCT
maxi=newnpCT.max()
#if there is nothing near we open the ROI
if (maxi<2500 and CT==True) or (CT==False and maxi>50 ) or maxi==0:
compX1-=sizex
if compX1<= 0:
compX1= 0
compX2+=sizex
if compX2>= len(npCT[0][0][0])-1:
compX2= len(npCT[0][0][0])-1
compY1-=sizey
if compY1<= 0:
compY1= 0
compY2+=sizey
if compY2>= len(npCT[0][0])-1:
compY2= len(npCT[0][0])-1
compZ1-=sizez
if compZ1<= 0:
compZ1= 0
compZ2+=sizez
if compZ2>= len(npCT[0])-1:
compZ2= len(npCT[0])-1
maxi=0
inc+=1
#calculation of the center of mass
(lbl,numfeatures)=ndimage.label(CTopened)
centre=ndimage.measurements.center_of_mass(CTopened,lbl,range(1,numfeatures+1))
#if there is one center
if numfeatures==1:
moy = ndimage.measurements.center_of_mass(CTopened)
#if there are more than 5 centers of mass we put moy to none
elif numfeatures>5:
print "trop de centres de masse"
moy=None
#if there are between 3 and 5 centers of mass we take the 2 bigger ones
elif numfeatures>2 and numfeatures<6:
p=1
to={}
suppr=[]
#we determine the size of each centers
while p<=lbl.max():
val=where(lbl==p)
tailleVal={p:len(val[0])}
to.update(tailleVal)
p+=1
#sort the sizes and only keep the 2 biggest ones
tailles=[x for x in to.values()]
tailles.sort()
del tailles[-2:]
#then we know wich centers to suppress...
for el in tailles:
for cle, valeur in tailleVal.items():
if valeur==el:
suppr.append(cle)
#...and suppress them
for el in suppr:
lbl[lbl==el]=0
#we then compute the centers of mass, since we do not know on wich axis they are, we first try with [0,1], if one of the centers is (nan,nan,nan) we try with [1,2]
centre=ndimage.measurements.center_of_mass(CTopened,lbl,[0,1])
if isnan(centre[0][0])==True:
centre=ndimage.measurements.center_of_mass(CTopened,lbl,[1,2])
#we calculate the coordinates in the CT native space in order to calculate the distance with the first approximation
centre0=(centre[0][2]+compX1*sizex,centre[0][1]+compY1*sizey,centre[0][0]+compZ1*sizez)
centre1=(centre[1][2]+compX1*sizex,centre[1][1]+compY1*sizey,centre[1][0]+compZ1*sizez)
entCentre0=vecteur(entry,centre0)
dist0=norme3D(entCentre0)
entCentre1=vecteur(entry,centre1)
dist1=norme3D(entCentre1)
#we only take the one that is nearest to the point we first approximated
if dist0>dist1:
moy=centre[1]
else:
moy=centre[0]
#here is the case where nothing goes wrong
else:
centre0=(centre[0][2]+compX1*sizex,centre[0][1]+compY1*sizey,centre[0][0]+compZ1*sizez)
centre1=(centre[1][2]+compX1*sizex,centre[1][1]+compY1*sizey,centre[1][0]+compZ1*sizez)
entCentre0=vecteur(entry,centre0)
dist0=norme3D(entCentre0)
entCentre1=vecteur(entry,centre1)
dist1=norme3D(entCentre1)
if dist0>dist1:
moy=centre[1]
else:
moy=centre[0]
#if we have a center we will also calculate its distance with the previous plot
if moy is not None:
moyverif=((moy[2]+compX1)*sizex,(moy[1]+compY1)*sizey,(moy[0]+compZ1)*sizez)
verif=norme3D(vecteur(entry,moyverif))
emVect=vecteur(entry,moyverif)
#if the plot found is too far we put moy to none
if d!=0 and verif>d*1.3:
moy=None
print "too far"
#this is the case where we approximate the target, we want it at most 2mm far from the theoretical target
elif d==0 and verif>2:
moy=None
print "verif:" ,verif
#if the plot is too close
elif d!=0 and verif<d/1.3:
print "trop pres"
#pdb.set_trace()
#coef2=d*1.1/verif
#moy=((coef2*(moyverif[2]-entry[2])+entry[2])/sizex-compX1,(coef2*(moyverif[1]-entry[1])+entry[1])/sizey-compY1,(coef2*(moyverif[0]-entry[0])+entry[0])/sizez-compZ1)
moy=None
if moy is not None:
moy0=moy[0]
moy1=moy[1]
moy2=moy[2]
moy0+=compZ1
moy1+=compY1
moy2+=compX1
moy=(moy0,moy1,moy2)
return moy
def locateContact(npCT,coteRegionX,coteRegionY,coteRegionZ,sizex,sizey,sizez,volCT,entry,d,point,s1n,serpentin,CT):
#initialization of variables
error=10
j=0
moyt=(0,0,0)
ite=0
#print "entry: ", entry
#print "point : ",point
#we do the center of mass of the ROI while the error between two approximations is < 0.04
while error>0.04 and ite<10000:
#initialization of variables
npCTtempo=None
aa=0
#We launch the approximation a first time in order to know if moy is none
if j==0:
moy=findMoyMax(npCT,sizex,sizey,sizez,volCT,entry,d,s1n,coteRegionX,coteRegionY,coteRegionZ,CT)
else:
moy=findMoyMax(npCT,sizex,sizey,sizez,volCT,entry,d,replace,coteRegionX,coteRegionY,coteRegionZ,CT)
#print "moy",moy
#if moy is none we want to get out of the while
if moy is None:
error=0
else:
error=abs(norme3D(moyt)-norme3D(moy))
replace=(moy[2]*sizex,moy[1]*sizey,moy[0]*sizez)
moyt=moy
ite+=1
j+=1
#we lauch the approximation of the center of mass once
if moy is None:
if s1n==point:
moy=findMoyMax(npCT,sizex,sizey,sizez,volCT,point,0,s1n,coteRegionX,coteRegionY,coteRegionZ,CT)
else:
moy=findMoyMax(npCT,sizex,sizey,sizez,volCT,point,0.2,s1n,coteRegionX,coteRegionY,coteRegionZ,CT)
#if the computations fail at this point, we will give it the first approximation
if moy is None:
appPointret=s1n
#transformation of the center of mass found to the CT natif space
else:
appPointret=(moy[2]*sizex,moy[1]*sizey,moy[0]*sizez)
else:
appPointret=(moy[2]*sizex,moy[1]*sizey,moy[0]*sizez)
#print "appPointret: ",appPointret
return appPointret
def locateContacts(target,entry,npCT,volCT,nbContacts,sizex,sizey,sizez,do,transfo_pre_to_postopInv,brainMask,sizeT1,dicPoints,serpentin,transfo_pre_to_postop,CT):
#entry et target dans le repere CT natif
#variables' initialization
targetH=target
entryH=entry
contacts={}
i=0
theta=0
signex={}
signey={}
signez={}
angles={}
theta=0
#counts the number of times moy is returned none
compteurMoy=0
#Approximation for each contacts, we start at the theoretical target, wich will also be approximated
#it has to be noted that the entry is after the first iteration the current approximated plot, and target the previous one
while i<nbContacts:
print "contact numero:", i
#first and second approximation are different from others
#the first entry in the do dictionnary, wich rassembles the inter-contact's distances, is the length between the target and the entry, we then have to take the distance
#between the target and the next contact: do[1]
if i==0:
coteRegionX=abs(do[i+1]/(1.7*sizex))
coteRegionY=abs(do[i+1]/(1.7*sizey))
coteRegionZ=abs(do[i+1]/(1.7*sizez))
#after the first approximation we just take the inter contact distance with the point we want to approximate and the previous one
else:
coteRegionX=abs(do[i]/(1.7*sizex))
coteRegionY=abs(do[i]/(1.7*sizey))
coteRegionZ=abs(do[i]/(1.7*sizez))
#at first, we take the theoretical target as the first estimation
if i==0:
s1n=target
#otherwise we calculate the next point with distance d from the previous plot
else:
if i==1:
a=(do[1]/do[0])
#our first approximation in the CT natif space
s1n=(a*(entry[0]-target[0])+target[0],a*(entry[1]-target[1])+target[1],a*(entry[2]-target[2])+target[2])
else:
a=(do[i]/do[i-1])
#our first approximation in the CT natif space
s1n=(a*(entry[0]-target[0])+entry[0],a*(entry[1]-target[1])+entry[1],a*(entry[2]-target[2])+entry[2])
if i>1:
aa=1.0005
b=0.9994
enS1=vecteur(entry,s1n)
enS1Norm=norme3D(enS1)
while enS1Norm<(do[i]-0.4) or enS1Norm>(do[i]+0.4):
if enS1Norm<do[i]-0.4:
s1n=((a*(entry[0]-target[0])+entry[0])*aa,(a*(entry[1]-target[1])+entry[1])*aa,(a*(entry[2]-target[2])+entry[2])*aa)
aa+=0.0001
enS1=vecteur(entry,s1n)
enS1Norm=norme3D(enS1)
else:
s1n=((a*(entry[0]-target[0])+entry[0])*b,(a*(entry[1]-target[1])+entry[1])*b,(a*(entry[2]-target[2])+entry[2])*b)
b-=0.0001
enS1=vecteur(entry,s1n)
enS1Norm=norme3D(enS1)
if b<=0:
s1n=(2*entry[0]-target[0],2*entry[1]-target[1],2*entry[2]-target[2])
enS1Norm=do[i]
#print "dicPoints: ",dicPoints
#print "s1n :", s1n
#first approximation with d=0, distance between target and its approximation should be small
#returns a value in the CT natif space without voxel size correction
if i==0:
appPoint=locateContact(npCT,coteRegionX,coteRegionY,coteRegionZ,sizex,sizey,sizez,volCT,target,0,dicPoints[i+1],s1n,serpentin,CT)
#second opproximation, target is the previous point, it will be entry after this iteration
elif i==1:
appPoint=locateContact(npCT,coteRegionX,coteRegionY,coteRegionZ,sizex,sizey,sizez,volCT,target,do[i],dicPoints[i+1],s1n,serpentin,CT)
#entry is the previous point
else:
appPoint=locateContact(npCT,coteRegionX,coteRegionY,coteRegionZ,sizex,sizey,sizez,volCT,entry,do[i],dicPoints[i+1],s1n,serpentin,CT)
#at the second iteration the target becomes the entry (wich is from iteration 2 the previous point)
if i>1:
prepre=target
target=entry
#print "target 312 : ", target
if i>0:
entry=appPoint
#print "entry 315: ",entry
vect11=vecteur(target,entry)
#Calculation of the angle between the two vectors joining 3 consecutive points, last one being the current approximated point.
if i>1:
try:
theta=math.acos(vdot(vect11,vect12)/(norme3D(vect11)*norme3D(vect12)))
#print theta
#if it can't be done it is often because the vectors are identical, so we instanciate theta to 0
except:
theta=0
#We store the angles in order to be able to reduce deviations
if i>1:
signex.update({i:((appPoint[0]-target[0])/abs(appPoint[0]-target[0]))})
signey.update({i:((appPoint[1]-target[1])/abs(appPoint[1]-target[1]))})
signez.update({i:((appPoint[2]-target[2])/abs(appPoint[2]-target[2]))})
angle={i:theta}
angles.update(angle)
#target becomes the approximated one
if i==0:
target=appPoint
#print "target 338: ", target
if i>0:
vect12=vect11
entry=appPoint
#print "entry 342: ",entry
#print entry
#Transformation of the found plot to the T1 natif referential
appPointtemp=(appPoint[0],appPoint[1],appPoint[2])
appPointtemp=list(appPointtemp)
appPointtemp.append(1)
appPointtemp=array(appPointtemp)
appPointT1nat=transfo_pre_to_postopInv.dot(appPointtemp.T)
point=list(appPointT1nat)
del point[-1]
appPointT1nat=tuple(point)
contact={i:appPointT1nat}
contacts.update(contact)
if serpentin==True:
if i>2:
if (signex[i-1]-signex[i]!=0 or signey[i-1]-signey[i]!=0 or signey[i-1]-signey[i]!=0) and angles[i]>0.05 and angles[i-1]>0.05:
prepreNorm=norme3D(vecteur(prepre,entry))
coef=do[i-1]/prepreNorm
target=((entry[0]-prepre[0])*coef+prepre[0],(entry[1]-prepre[1])*coef+prepre[1],(entry[2]-prepre[2])*coef+prepre[2])
#print "target 363 : ", target
appPointtemp=(target[0],target[1],target[2])
appPointtemp=list(appPointtemp)
appPointtemp.append(1)
appPointtemp=array(appPointtemp)
appPointT1nat=transfo_pre_to_postopInv.dot(appPointtemp.T)
point=list(appPointT1nat)
del point[-1]
appPointT1nat=tuple(point)
contacts[i-1]=appPointT1nat
print "modif 410"
else:
if appPoint==s1n:
#increases the number of times moy is none
compteurMoy+=1
if compteurMoy>1:
print "trop de moy=None"
moy=findMoyMax(npCT,sizex,sizey,sizez,volCT,dicPoints[i+1],0.2,dicPoints[i+1],coteRegionX,coteRegionY,coteRegionZ,CT)
if moy is not None:
appPoint=(moy[2]*sizex,moy[1]*sizey,moy[0]*sizez)
print "appPoint: ", appPoint
#print "entry 383: ", entry
else:
appPoint=dicPoints[i+1]
#print "entry 386 :",entry
compteurMoy=0
#Transformation of the found plot to the T1 natif referential
appPointtemp=(appPoint[0],appPoint[1],appPoint[2])
appPointtemp=list(appPointtemp)
appPointtemp.append(1)
appPointtemp=array(appPointtemp)
appPointT1nat=transfo_pre_to_postopInv.dot(appPointtemp.T)
point=list(appPointT1nat)
del point[-1]
appPointT1nat=tuple(point)
contacts[i]=appPointT1nat
print "modif 437"
try:
coef1=(do[i-1]+do[i-2])/norme3D(vecteur(contacts[i-3],contacts[i]))
contacts[i-1]=(coef1*(appPointT1nat[0]-contacts[i-3][0])+contacts[i-3][0],coef1*(appPointT1nat[1]-contacts[i-3][1])+contacts[i-3][1],coef1*(appPointT1nat[2]-contacts[i-3][2])+contacts[i-3][2])
coef2=do[i-2]/norme3D(vecteur(contacts[i-3],contacts[i]))
contacts[i-2]=(coef2*(appPointT1nat[0]-contacts[i-3][0])+contacts[i-3][0],coef2*(appPointT1nat[1]-contacts[i-3][1])+contacts[i-3][1],coef2*(appPointT1nat[2]-contacts[i-3][2])+contacts[i-3][2])
except:
try:
coef2=do[i-1]/norme3D(vecteur(contacts[i-2],contacts[i]))
contacts[i-1]=(coef2*(appPointT1nat[0]-contacts[i-2][0])+contacts[i-2][0],coef2*(appPointT1nat[1]-contacts[i-2][1])+contacts[i-2][1],coef2*(appPointT1nat[2]-contacts[i-2][2])+contacts[i-2][2])
except:
print "modif 450"
#print "a"
entry=appPoint
#print "entry 408: ", entry
#Transformation of the found plot to the T1 natif referential
appPointtemp=(contacts[i-1][0],contacts[i-1][1],contacts[i-1][2])
appPointtemp=list(appPointtemp)
appPointtemp.append(1)
appPointtemp=array(appPointtemp)
appPointT1nat=transfo_pre_to_postop.dot(appPointtemp.T)
point=list(appPointT1nat)
del point[-1]
target=tuple(point)
appPointT1nat=contacts[i]
#print "target 418: ", target
#we make shure that the new point isn't at an angle>10 degrees
if i>=nbContacts-2:
v0=vecteur(contacts[i-2],contacts[i-1])
v1=vecteur(contacts[i-1],contacts[i])
try:
theta=math.acos(vdot(v0,v1)/(norme3D(v0)*norme3D(v1)))
except:
theta=0
if theta> 0.174533:
#we lauch the approximation of the center of mass once
moy=findMoyMax(npCT,sizex,sizey,sizez,volCT,entry,do[i],dicPoints[i+1],coteRegionX/1.1,coteRegionY/1.1,coteRegionZ/1.1,CT)
#if the computations fail at this point, we will give it the first approximation
if moy is None:
appPoint=dicPoints[i+1]
else:
appPoint=(moy[2]*sizex,moy[1]*sizey,moy[0]*sizez)
#Transformation of the approximated contact to the T1 natif referential
appPointtemp=list(appPoint)
appPointtemp.append(1)
appPointtemp=array(appPointtemp)
appPointT1nat=transfo_pre_to_postopInv.dot(appPointtemp.T)
point=list(appPointT1nat)
del point[-1]
contacts[i]=tuple(point)
print "modif 490"
v0=vecteur(contacts[i-2],contacts[i-1])
v1=vecteur(contacts[i-1],contacts[i])
try:
theta=math.acos(vdot(v0,v1)/(norme3D(v0)*norme3D(v1)))
except:
theta=0
if theta> 0.174533:
appPoint=dicPoints[i+1]
c#Transformation of the approximated contact to the T1 natif referential
appPointtemp=list(appPoint)
appPointtemp.append(1)
appPointtemp=array(appPointtemp)
appPointT1nat=transfo_pre_to_postopInv.dot(appPointtemp.T)
point=list(appPointT1nat)
del point[-1]
contacts[i]=tuple(point)
print "modif 507"
#print "theta sup 0.17"
#print "target 445: ", target
#print "entry :", entry
#Suppression of the located contact so it doesn't interfear with the approximation of the next one
#Calculation of the size of the npCT matrix we are going to remove
if i==0:
a=round(appPoint[2]/sizez-do[i+1]/(2.2*sizez))
b=round(appPoint[2]/sizez+do[i+1]/(2.2*sizez))
c=round(appPoint[1]/sizey-do[i+1]/(2.2*sizey))
d=round(appPoint[1]/sizey+do[i+1]/(2.2*sizey))
e=round(appPoint[0]/sizex-do[i+1]/(2.2*sizex))
f=round(appPoint[0]/sizex+do[i+1]/(2.2*sizex))
else:
a=round(appPoint[2]/sizez-do[i]/(2.2*sizez))
b=round(appPoint[2]/sizez+do[i]/(2.2*sizez))
c=round(appPoint[1]/sizey-do[i]/(2.2*sizey))
d=round(appPoint[1]/sizey+do[i]/(2.2*sizey))
e=round(appPoint[0]/sizex-do[i]/(2.2*sizex))
f=round(appPoint[0]/sizex+do[i]/(2.2*sizex))
#Removal of the contact
try:
npCT[0,a:b,c:d,e:f]=zeros(npCT[0,a:b,c:d,e:f].shape)
except:
pdb.set_trace()
print "contacts : ", contacts
#approximation of the contacts with only the first approximation :newS1=(a*(entry[0]-target[0])+entry[0],a*(entry[1]-target[1])+entry[1],a*(entry[2]-target[2])+entry[2]) if the contact is near the bone
#Only starts running after the nb of contacts/2-th- contact
if i>nbContacts/2:
#if no brainMask is found, this computation doesn't take place
if brainMask is None:
pass
else:
#We see if we still are in the brain: the value will be !=0
if brainMask[0,appPointT1nat[2],appPointT1nat[1],appPointT1nat[0]]!=0:
pass
else:
#if we weren't in brain, we are going to look around if we find some
if brainMask[0,appPointT1nat[2]-(do[i]/sizeT1[2]):appPointT1nat[2]+(do[i]/sizeT1[2]),appPointT1nat[1]-(do[i]/sizeT1[1]):appPointT1nat[1]+(do[i]/sizeT1[1]),appPointT1nat[0]-(do[i]/sizeT1[0]):appPointT1nat[0]+(do[i]/sizeT1[0])].max()!=0:
pass
else:
#no brain is found, the contact will then be approximated in the continuation of the 2 contacts that come before
i+=1
while i<nbContacts:
#print "b"
entar=vecteur(target,entry)
entarNorm=norme3D(entar)
a=(do[i]/entarNorm)
newS1=(a*(entry[0]-target[0])+entry[0],a*(entry[1]-target[1])+entry[1],a*(entry[2]-target[2])+entry[2])
#Transformation of the approximated contact to the T1 natif referential
appPointtemp=list(newS1)
appPointtemp.append(1)
appPointtemp=array(appPointtemp)
appPointT1nat=transfo_pre_to_postopInv.dot(appPointtemp.T)
point=list(appPointT1nat)
del point[-1]
newContact=tuple(point)
contact={i:newContact}
contacts.update(contact)
target=entry
#print "target 504: ", target
entry=newS1
#print "entry 506: ",entry
i+=1
i+=1
return contacts