-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEnsembled_functional_API_sarcasm_classification
1 lines (1 loc) · 213 KB
/
Ensembled_functional_API_sarcasm_classification
1
{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"bpBile8xPdIA"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":1,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":18248,"status":"ok","timestamp":1670620183059,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"},"user_tz":-540},"id":"wuq_C7s66FL8","outputId":"5ad83554-c22d-4f91-a597-d3ce15ec071f"},"outputs":[{"output_type":"stream","name":"stdout","text":["Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n","Collecting transformers\n"," Downloading transformers-4.25.1-py3-none-any.whl (5.8 MB)\n","\u001b[K |████████████████████████████████| 5.8 MB 30.6 MB/s \n","\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from transformers) (3.8.0)\n","Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (1.21.6)\n","Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.8/dist-packages (from transformers) (2022.6.2)\n","Collecting huggingface-hub<1.0,>=0.10.0\n"," Downloading huggingface_hub-0.11.1-py3-none-any.whl (182 kB)\n","\u001b[K |████████████████████████████████| 182 kB 112.0 MB/s \n","\u001b[?25hRequirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from transformers) (2.23.0)\n","Collecting tokenizers!=0.11.3,<0.14,>=0.11.1\n"," Downloading tokenizers-0.13.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB)\n","\u001b[K |████████████████████████████████| 7.6 MB 86.2 MB/s \n","\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.8/dist-packages (from transformers) (4.64.1)\n","Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.8/dist-packages (from transformers) (21.3)\n","Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from transformers) (6.0)\n","Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0,>=0.10.0->transformers) (4.4.0)\n","Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging>=20.0->transformers) (3.0.9)\n","Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (3.0.4)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2022.9.24)\n","Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (2.10)\n","Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->transformers) (1.24.3)\n","Installing collected packages: tokenizers, huggingface-hub, transformers\n","Successfully installed huggingface-hub-0.11.1 tokenizers-0.13.2 transformers-4.25.1\n","Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n","Collecting datasets\n"," Downloading datasets-2.7.1-py3-none-any.whl (451 kB)\n","\u001b[K |████████████████████████████████| 451 kB 32.3 MB/s \n","\u001b[?25hCollecting multiprocess\n"," Downloading multiprocess-0.70.14-py38-none-any.whl (132 kB)\n","\u001b[K |████████████████████████████████| 132 kB 60.3 MB/s \n","\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.8/dist-packages (from datasets) (2022.11.0)\n","Requirement already satisfied: huggingface-hub<1.0.0,>=0.2.0 in /usr/local/lib/python3.8/dist-packages (from datasets) (0.11.1)\n","Requirement already satisfied: dill<0.3.7 in /usr/local/lib/python3.8/dist-packages (from datasets) (0.3.6)\n","Collecting responses<0.19\n"," Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n","Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from datasets) (21.3)\n","Requirement already satisfied: pyarrow>=6.0.0 in /usr/local/lib/python3.8/dist-packages (from datasets) (9.0.0)\n","Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.8/dist-packages (from datasets) (2.23.0)\n","Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.8/dist-packages (from datasets) (6.0)\n","Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.8/dist-packages (from datasets) (4.64.1)\n","Requirement already satisfied: aiohttp in /usr/local/lib/python3.8/dist-packages (from datasets) (3.8.3)\n","Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/dist-packages (from datasets) (1.21.6)\n","Requirement already satisfied: pandas in /usr/local/lib/python3.8/dist-packages (from datasets) (1.3.5)\n","Collecting xxhash\n"," Downloading xxhash-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)\n","\u001b[K |████████████████████████████████| 212 kB 116.3 MB/s \n","\u001b[?25hRequirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.8.2)\n","Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.3.3)\n","Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (4.0.2)\n","Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (1.3.1)\n","Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (22.1.0)\n","Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (2.1.1)\n","Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.8/dist-packages (from aiohttp->datasets) (6.0.3)\n","Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0.0,>=0.2.0->datasets) (3.8.0)\n","Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.8/dist-packages (from huggingface-hub<1.0.0,>=0.2.0->datasets) (4.4.0)\n","Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->datasets) (3.0.9)\n","Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->datasets) (1.24.3)\n","Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->datasets) (3.0.4)\n","Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->datasets) (2.10)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests>=2.19.0->datasets) (2022.9.24)\n","Collecting urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1\n"," Downloading urllib3-1.25.11-py2.py3-none-any.whl (127 kB)\n","\u001b[K |████████████████████████████████| 127 kB 109.8 MB/s \n","\u001b[?25hRequirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.8/dist-packages (from pandas->datasets) (2.8.2)\n","Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.8/dist-packages (from pandas->datasets) (2022.6)\n","Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.8/dist-packages (from python-dateutil>=2.7.3->pandas->datasets) (1.15.0)\n","Installing collected packages: urllib3, xxhash, responses, multiprocess, datasets\n"," Attempting uninstall: urllib3\n"," Found existing installation: urllib3 1.24.3\n"," Uninstalling urllib3-1.24.3:\n"," Successfully uninstalled urllib3-1.24.3\n","Successfully installed datasets-2.7.1 multiprocess-0.70.14 responses-0.18.0 urllib3-1.25.11 xxhash-3.1.0\n"]}],"source":["!pip install transformers\n","!pip install datasets"]},{"cell_type":"markdown","metadata":{"id":"7mWggpW86JSy"},"source":["# **Preprocessing data**"]},{"cell_type":"code","execution_count":2,"metadata":{"executionInfo":{"elapsed":4351,"status":"ok","timestamp":1670620187406,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"},"user_tz":-540},"id":"Znr33uHB6FOp"},"outputs":[],"source":["import tensorflow as tf\n","import numpy as np\n","import sklearn\n","from sklearn import metrics\n","import transformers\n","from transformers import AutoTokenizer, TFAutoModelForSequenceClassification\n","import json\n","import matplotlib.pyplot as plt\n","import random\n","import seaborn as sn\n","import pandas as pd\n","import re\n","import seaborn as sns\n","from sklearn.model_selection import train_test_split\n","import tokenizers\n","from datasets import load_dataset\n","from datasets import Dataset\n","\n","import json\n","import os \n","import sklearn\n","import seaborn as sbs\n","import sklearn.naive_bayes \n","import sklearn.model_selection\n","import sklearn.metrics\n","import pandas as pd"]},{"cell_type":"code","execution_count":3,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":17523,"status":"ok","timestamp":1670620204925,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"},"user_tz":-540},"id":"E58m1doU6FRI","outputId":"68f2bdf1-c8fb-4552-dbd3-95084751eb94"},"outputs":[{"output_type":"stream","name":"stdout","text":["(1010826, 10)\n"]}],"source":["\n","def load_json(jfile):\n"," data = []\n"," with open(jfile) as f:\n"," for line in f.readlines():\n"," j = json.loads(line)\n"," url, headline, sarcastic = j['article_link'], j['headline'], j['is_sarcastic']\n"," data.append([url, headline, sarcastic])\n"," return pd.DataFrame(data, columns=['article_link', 'headline', 'is_sarcastic'])\n","\n","\n","def load_data_reddit(path):\n"," sarcasm_data = pd.read_csv(path)\n"," print(sarcasm_data.shape)\n"," # sarcasm_data.head()\n"," sarcasm_data.drop(['author', 'subreddit', 'score', 'ups', 'downs', 'date', 'created_utc', 'parent_comment'], axis=1, inplace=True)\n"," # remove empty rows\n"," sarcasm_data.dropna(inplace=True)\n"," # sarcasm_data.head()\n","\n"," mispell_dict = {\"ain't\": \"is not\", \"cannot\": \"can not\", \"aren't\": \"are not\", \"can't\": \"can not\", \"'cause\": \"because\", \"could've\": \"could have\", \"couldn't\": \"could not\", \"didn't\": \"did not\",\n"," \"doesn't\": \"does not\",\n"," \"don't\": \"do not\", \"hadn't\": \"had not\", \"hasn't\": \"has not\", \"haven't\": \"have not\", \"he'd\": \"he would\", \"he'll\": \"he will\", \"he's\": \"he is\", \"how'd\": \"how did\",\n"," \"how'd'y\": \"how do you\", \"how'll\": \"how will\", \"how's\": \"how is\", \"I'd\": \"I would\", \"I'd've\": \"I would have\", \"I'll\": \"I will\", \"I'll've\": \"I will have\", \"I'm\": \"I am\",\n"," \"I've\": \"I have\", \"i'd\": \"i would\", \"i'd've\": \"i would have\", \"i'll\": \"i will\", \"i'll've\": \"i will have\", \"i'm\": \"i am\", \"i've\": \"i have\", \"isn't\": \"is not\", \"it'd\": \"it would\",\n"," \"it'd've\": \"it would have\", \"it'll\": \"it will\", \"it'll've\": \"it will have\", \"it's\": \"it is\", \"let's\": \"let us\", \"ma'am\": \"madam\", \"mayn't\": \"may not\", \"might've\": \"might have\",\n"," \"mightn't\": \"might not\", \"mightn't've\": \"might not have\", \"must've\": \"must have\", \"mustn't\": \"must not\", \"mustn't've\": \"must not have\", \"needn't\": \"need not\",\n"," \"needn't've\": \"need not have\", \"o'clock\": \"of the clock\", \"oughtn't\": \"ought not\", \"oughtn't've\": \"ought not have\", \"shan't\": \"shall not\", \"sha'n't\": \"shall not\",\n"," \"shan't've\": \"shall not have\", \"she'd\": \"she would\", \"she'd've\": \"she would have\", \"she'll\": \"she will\", \"she'll've\": \"she will have\", \"she's\": \"she is\",\n"," \"should've\": \"should have\", \"shouldn't\": \"should not\", \"shouldn't've\": \"should not have\", \"so've\": \"so have\", \"so's\": \"so as\", \"this's\": \"this is\", \"that'd\": \"that would\",\n"," \"that'd've\": \"that would have\", \"that's\": \"that is\", \"there'd\": \"there would\", \"there'd've\": \"there would have\", \"there's\": \"there is\", \"here's\": \"here is\", \"they'd\": \"they would\",\n"," \"they'd've\": \"they would have\", \"they'll\": \"they will\", \"they'll've\": \"they will have\", \"they're\": \"they are\", \"they've\": \"they have\", \"to've\": \"to have\", \"wasn't\": \"was not\",\n"," \"we'd\": \"we would\", \"we'd've\": \"we would have\", \"we'll\": \"we will\", \"we'll've\": \"we will have\", \"we're\": \"we are\", \"we've\": \"we have\", \"weren't\": \"were not\",\n"," \"what'll\": \"what will\", \"what'll've\": \"what will have\", \"what're\": \"what are\", \"what's\": \"what is\", \"what've\": \"what have\", \"when's\": \"when is\", \"when've\": \"when have\",\n"," \"where'd\": \"where did\", \"where's\": \"where is\", \"where've\": \"where have\", \"who'll\": \"who will\", \"who'll've\": \"who will have\", \"who's\": \"who is\", \"who've\": \"who have\",\n"," \"why's\": \"why is\", \"why've\": \"why have\", \"will've\": \"will have\", \"won't\": \"will not\", \"wont\": \"will not\", \"won't've\": \"will not have\", \"would've\": \"would have\",\n"," \"wouldn't\": \"would not\",\n"," \"wouldn't've\": \"would not have\", \"y'all\": \"you all\", \"y'all'd\": \"you all would\", \"y'all'd've\": \"you all would have\", \"y'all're\": \"you all are\", \"y'all've\": \"you all have\",\n"," \"you'd\": \"you would\", \"you'd've\": \"you would have\", \"you'll\": \"you will\", \"you'll've\": \"you will have\", \"you're\": \"you are\", \"you've\": \"you have\", 'colour': 'color',\n"," 'centre': 'center', 'favourite': 'favorite', 'travelling': 'traveling', 'counselling': 'counseling', 'theatre': 'theater', 'cancelled': 'canceled', 'labour': 'labor',\n"," 'organisation': 'organization', 'wwii': 'world war 2', 'citicise': 'criticize', 'youtu ': 'youtube ', 'Qoura': 'Quora', 'sallary': 'salary', 'Whta': 'What',\n"," 'narcisist': 'narcissist', 'howdo': 'how do', 'whatare': 'what are', 'howcan': 'how can', 'howmuch': 'how much', 'howmany': 'how many', 'whydo': 'why do', 'doI': 'do I',\n"," 'theBest': 'the best', 'howdoes': 'how does', 'Etherium': 'Ethereum',\n"," 'narcissit': 'narcissist', 'bigdata': 'big data', '2k17': '2017', '2k18': '2018', 'qouta': 'quota', 'exboyfriend': 'ex boyfriend', 'airhostess': 'air hostess', \"whst\": 'what',\n"," 'watsapp': 'whatsapp', 'demonitisation': 'demonetization', 'demonitization': 'demonetization', 'demonetisation': 'demonetization'}\n","\n"," mispell_dict = {k.lower(): v.lower() for k, v in mispell_dict.items()}\n","\n"," def preprocessing_reddit_text(s):\n"," # making our string lowercase & removing extra spaces\n"," s = str(s).lower().strip()\n"," \n"," # remove contractions.\n"," s = \" \".join([mispell_dict[word] if word in mispell_dict.keys() else word for word in s.split()])\n"," \n"," # removing \\n\n"," s = re.sub('\\n', '', s)\n"," \n"," # put spaces before & after punctuations to make words seprate. Like \"king?\" to \"king\", \"?\".\n"," s = re.sub(r\"([?!,+=—&%\\'\\\";:¿।।।|\\(\\){}\\[\\]//])\", r\" \\1 \", s)\n"," \n"," # Remove more than 2 continues spaces with 1 space.\n"," s = re.sub('[ ]{2,}', ' ', s).strip()\n"," \n"," return s\n","\n"," # apply preprocessing_text function\n"," sarcasm_data['comment'] = sarcasm_data['comment'].apply(preprocessing_reddit_text)\n"," # sarcasm_data.head()\n","\n"," sarcasm_data = sarcasm_data.dropna()\n","\n"," sarcasm_data = sarcasm_data.reset_index(drop=True)\n"," data = sarcasm_data.drop([\"label\"], axis = 1)\n"," label = sarcasm_data.drop([\"comment\"], axis = 1)\n","\n"," return data, label\n","\n","\n","def load_data_headline(path1, path2):\n"," df = load_json(path1)\n"," df2 = load_json(path2)\n"," df.is_sarcastic.value_counts(normalize=True), df.is_sarcastic.value_counts()\n","\n"," frames = [df, df2] \n"," combine_df = pd.concat(frames)\n","\n"," combine_df.drop(['article_link'], axis=1, inplace=True)\n"," combine_df.dropna(inplace=True)\n"," \n"," mispell_dict = {\"ain't\": \"is not\", \"cannot\": \"can not\", \"aren't\": \"are not\", \"can't\": \"can not\", \"'cause\": \"because\", \"could've\": \"could have\", \"couldn't\": \"could not\", \"didn't\": \"did not\",\n"," \"doesn't\": \"does not\",\n"," \"don't\": \"do not\", \"hadn't\": \"had not\", \"hasn't\": \"has not\", \"haven't\": \"have not\", \"he'd\": \"he would\", \"he'll\": \"he will\", \"he's\": \"he is\", \"how'd\": \"how did\",\n"," \"how'd'y\": \"how do you\", \"how'll\": \"how will\", \"how's\": \"how is\", \"I'd\": \"I would\", \"I'd've\": \"I would have\", \"I'll\": \"I will\", \"I'll've\": \"I will have\", \"I'm\": \"I am\",\n"," \"I've\": \"I have\", \"i'd\": \"i would\", \"i'd've\": \"i would have\", \"i'll\": \"i will\", \"i'll've\": \"i will have\", \"i'm\": \"i am\", \"i've\": \"i have\", \"isn't\": \"is not\", \"it'd\": \"it would\",\n"," \"it'd've\": \"it would have\", \"it'll\": \"it will\", \"it'll've\": \"it will have\", \"it's\": \"it is\", \"let's\": \"let us\", \"ma'am\": \"madam\", \"mayn't\": \"may not\", \"might've\": \"might have\",\n"," \"mightn't\": \"might not\", \"mightn't've\": \"might not have\", \"must've\": \"must have\", \"mustn't\": \"must not\", \"mustn't've\": \"must not have\", \"needn't\": \"need not\",\n"," \"needn't've\": \"need not have\", \"o'clock\": \"of the clock\", \"oughtn't\": \"ought not\", \"oughtn't've\": \"ought not have\", \"shan't\": \"shall not\", \"sha'n't\": \"shall not\",\n"," \"shan't've\": \"shall not have\", \"she'd\": \"she would\", \"she'd've\": \"she would have\", \"she'll\": \"she will\", \"she'll've\": \"she will have\", \"she's\": \"she is\",\n"," \"should've\": \"should have\", \"shouldn't\": \"should not\", \"shouldn't've\": \"should not have\", \"so've\": \"so have\", \"so's\": \"so as\", \"this's\": \"this is\", \"that'd\": \"that would\",\n"," \"that'd've\": \"that would have\", \"that's\": \"that is\", \"there'd\": \"there would\", \"there'd've\": \"there would have\", \"there's\": \"there is\", \"here's\": \"here is\", \"they'd\": \"they would\",\n"," \"they'd've\": \"they would have\", \"they'll\": \"they will\", \"they'll've\": \"they will have\", \"they're\": \"they are\", \"they've\": \"they have\", \"to've\": \"to have\", \"wasn't\": \"was not\",\n"," \"we'd\": \"we would\", \"we'd've\": \"we would have\", \"we'll\": \"we will\", \"we'll've\": \"we will have\", \"we're\": \"we are\", \"we've\": \"we have\", \"weren't\": \"were not\",\n"," \"what'll\": \"what will\", \"what'll've\": \"what will have\", \"what're\": \"what are\", \"what's\": \"what is\", \"what've\": \"what have\", \"when's\": \"when is\", \"when've\": \"when have\",\n"," \"where'd\": \"where did\", \"where's\": \"where is\", \"where've\": \"where have\", \"who'll\": \"who will\", \"who'll've\": \"who will have\", \"who's\": \"who is\", \"who've\": \"who have\",\n"," \"why's\": \"why is\", \"why've\": \"why have\", \"will've\": \"will have\", \"won't\": \"will not\", \"wont\": \"will not\", \"won't've\": \"will not have\", \"would've\": \"would have\",\n"," \"wouldn't\": \"would not\",\n"," \"wouldn't've\": \"would not have\", \"y'all\": \"you all\", \"y'all'd\": \"you all would\", \"y'all'd've\": \"you all would have\", \"y'all're\": \"you all are\", \"y'all've\": \"you all have\",\n"," \"you'd\": \"you would\", \"you'd've\": \"you would have\", \"you'll\": \"you will\", \"you'll've\": \"you will have\", \"you're\": \"you are\", \"you've\": \"you have\", 'colour': 'color',\n"," 'centre': 'center', 'favourite': 'favorite', 'travelling': 'traveling', 'counselling': 'counseling', 'theatre': 'theater', 'cancelled': 'canceled', 'labour': 'labor',\n"," 'organisation': 'organization', 'wwii': 'world war 2', 'citicise': 'criticize', 'youtu ': 'youtube ', 'Qoura': 'Quora', 'sallary': 'salary', 'Whta': 'What',\n"," 'narcisist': 'narcissist', 'howdo': 'how do', 'whatare': 'what are', 'howcan': 'how can', 'howmuch': 'how much', 'howmany': 'how many', 'whydo': 'why do', 'doI': 'do I',\n"," 'theBest': 'the best', 'howdoes': 'how does', 'Etherium': 'Ethereum',\n"," 'narcissit': 'narcissist', 'bigdata': 'big data', '2k17': '2017', '2k18': '2018', 'qouta': 'quota', 'exboyfriend': 'ex boyfriend', 'airhostess': 'air hostess', \"whst\": 'what',\n"," 'watsapp': 'whatsapp', 'demonitisation': 'demonetization', 'demonitization': 'demonetization', 'demonetisation': 'demonetization'}\n"," \n"," mispell_dict = {k.lower(): v.lower() for k, v in mispell_dict.items()}\n","\n"," def preprocessing_headline_text(s):\n"," # making our string lowercase & removing extra spaces\n"," s = str(s).lower().strip()\n"," \n"," # remove contractions.\n"," s = \" \".join([mispell_dict[word] if word in mispell_dict.keys() else word for word in s.split()])\n"," \n"," # removing \\n\n"," s = re.sub('\\n', '', s)\n"," \n"," # put spaces before & after punctuations to make words seprate. Like \"king?\" to \"king\", \"?\".\n"," s = re.sub(r\"([?!,+=—&%\\'\\\";:¿।।।|\\(\\){}\\[\\]//])\", r\" \\1 \", s)\n"," \n"," # Remove more than 2 continues spaces with 1 space.\n"," s = re.sub('[ ]{2,}', ' ', s).strip()\n"," \n"," return s\n","\n"," # apply preprocessing_text function\n"," combine_df['headline'] = combine_df['headline'].apply(preprocessing_headline_text)\n"," # sarcasm_data.head()\n","\n"," combine_df = combine_df.dropna()\n","\n"," combine_df = combine_df.reset_index(drop=True)\n"," data = combine_df.drop([\"is_sarcastic\"], axis = 1)\n"," label = combine_df.drop([\"headline\"], axis = 1)\n"," \n"," return data, label\n"," \n","\n","reddit_path = \"/content/drive/MyDrive/thesis_datasets/train-balanced-sarcasm.csv\"\n","json_1_headline = '/content/drive/MyDrive/thesis_datasets/Sarcasm_Headlines_Dataset.json'\n","json_2_headline = '/content/drive/MyDrive/thesis_datasets/Sarcasm_Headlines_Dataset_v2.json'\n","\n","reddit_data, reddit_label = load_data_reddit(reddit_path)\n","headline_data, headline_label = load_data_headline(json_1_headline, json_2_headline)\n"]},{"cell_type":"code","source":["classes_dist = reddit_label['label'].value_counts().reset_index()\n","plt.figure(figsize=(15,8))\n","chart = sns.barplot(x=\"index\", y=\"label\", data=classes_dist)\n","# chart.set_xticklabels(chart.get_xticklabels(), rotation=45, horizontalalignment='right')\n","chart.set_title(\"Class distribution\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":530},"id":"gey65ssSacB-","executionInfo":{"status":"ok","timestamp":1670620204926,"user_tz":-540,"elapsed":15,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"b07683bb-f144-415f-dc13-00fec809d781"},"execution_count":4,"outputs":[{"output_type":"execute_result","data":{"text/plain":["Text(0.5, 1.0, 'Class distribution')"]},"metadata":{},"execution_count":4},{"output_type":"display_data","data":{"text/plain":["<Figure size 1080x576 with 1 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA44AAAHwCAYAAADpQDEMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfBklEQVR4nO3de7TvdV3n8ddbkLC8oHJiFFAoqeZooyajlK3JkcKDpcdl6ahNkkMys9QZHe2CTSsbLy27TJalzqJgCWUpOZZoEJGXtAvJkRwNlTwixsELCIi3vKDv+WN/aH6e9v6cs4Hf2fscHo+19tq/7+f7/X0/nx/+cdbT7/f33dXdAQAAgLXcYaMXAAAAwOYmHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCMABq6p+oap+bwPnf3tV/cR4/aNV9We34bkvq6pHjNe36eesqp+tqt+5rc4HwP5POAKwX6uqp1TVjqr6XFV9vKouqKrv3eh17a67X9PdJ+3puKp6dVW9eC/Od//ufvutXVdVPaKqdu127l/s7p+4tecG4MAhHAHYb1XVc5P8epJfTHJEkvskeWWS7Ru5rmWqqoM3eg0A3P4IRwD2S1V1tyQvTPLM7n5Dd3++u7/S3W/q7p9a4z1/WFWfqKobq+odVXX/hX2Prqr3V9Vnq+rqqvrJMX54Vb25qj5dVddX1TuratV/P6vqB6rqg+P8v5WkFvb9eFX95XhdVfWyqrqmqj5TVe+rqgdU1WlJfjTJT48rqG8ax19ZVT9TVe9N8vmqOniMff/C9IdW1evG+i+tqgcuzN1Vdb+F7VdX1Yur6puSXJDk3mO+z1XVvXe/9bWqHjtujf30uP32Xy/su7KqfrKq3js+9+uq6tC9+J8QgP2IcARgf/XdSQ5N8kfreM8FSY5L8s1JLk3ymoV9Zyb5z919lyQPSPLWMf68JLuSbMnKVc2fTdK7n7iqDk/yhiQ/l+TwJB9O8vA11nFSkn+X5NuS3C3JE5Nc191njDX9cnffubsfs/CeJyf5wSSHdfdNq5xze5I/THKPJL+f5I+r6o5r/pdI0t2fT3Jyko+N+e7c3R/b7XN9W5I/SPKc8d/g/CRvqqpDFg57YpJtSY5N8m+S/PhsXgD2P8IRgP3VPZN8ao2IWlV3n9Xdn+3uLyX5hSQPHFcuk+QrSbZW1V27+4buvnRh/F5J7juuaL6zu/9FOCZ5dJLLuvv13f2VrNxC+4k1lvKVJHdJ8h1Jqrs/0N0f38PyX97dV3X3P62x/90Lc/9aVqL6hD2cc2/8hyR/0t0XjXP/apI7Jfme3db2se6+PsmbkjzoNpgXgE1EOAKwv7ouyeF7+52/qjqoql5aVR+uqs8kuXLsOnz8/uGsxN9Hq+ovquq7x/ivJNmZ5M+q6oqqOn2NKe6d5KqbN0ZcXrXagd391iS/leQVSa6pqjOq6q57+Airnmu1/d39taxcJb33Ht6zN+6d5KO7nfuqJEcuHLMYyF9IcufbYF4ANhHhCMD+6m+SfCnJ4/by+Kdk5XbO78/K7aHHjPFKku6+pLu3Z+U21j9Ocu4Y/2x3P6+7vyXJY5M8t6pOXOX8H09y9M0bVVWL27vr7pd390OSbM3KLas3fy9ztauZs/GbLc59hyRHJbn5ttMvJPnGhWP/1TrO+7Ek9104982f6+o9vA+AA4hwBGC/1N03Jvn5JK+oqsdV1TdW1R2r6uSq+uVV3nKXrITmdVmJqF+8eUdVHTL+zuLdxu2Yn0nytbHvh6rqfiOYbkzy1Zv37eZPkty/qh4/roL+t3x9oP2zqvq3VfWw8R3Ezyf54sI5P5nkW9b5nyNJHrIw93PGZ7147HtPkqeMq67bknzfwvs+meSeC7fs7u7cJD9YVSeO9T5vnPuvb8EaAdhPCUcA9lvd/b+SPDcrD6S5Niu3UD4rK1cMd3dOVm65vDrJ+/P/o+pmP5bkynEb63/JytNNk5WH6fx5ks9l5SrnK7v7baus5VNJnpDkpVmJ0+OS/NUaS79rkt9OcsNY03VZuSU2WXlIz9bxBNPVPsda3piV7yPeMD7L40cEJ8mzkzwmyafH5/rn83b3B7Py8Jsrxpxfd3trd1+e5D8m+c0knxrneUx3f3kdawNgP1erf78fAAAAVrjiCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATB280QvYLA4//PA+5phjNnoZAAAAG+Ld7373p7p7y2r7hONwzDHHZMeOHRu9DAAAgA1RVR9da59bVQEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmDl7myavqyiSfTfLVJDd19/FVdY8kr0tyTJIrkzyxu2+oqkryG0keneQLSX68uy8d5zklyc+N0764u88e4w9J8uokd0pyfpJnd3evNccyP+u+8pCfOmejlwCwX3n3rzx1o5dwQPnHF37nRi8BYL9zn59/30Yv4VbbF1cc/313P6i7jx/bpyd5S3cfl+QtYztJTk5y3Pg5LcmrkmRE4AuSPCzJQ5O8oKruPt7zqiRPX3jftj3MAQAAwDptxK2q25OcPV6fneRxC+Pn9IqLkxxWVfdK8qgkF3X39eOq4UVJto19d+3ui7u7k5yz27lWmwMAAIB1WnY4dpI/q6p3V9VpY+yI7v74eP2JJEeM10cmuWrhvbvG2Gx81yrjszkAAABYp6V+xzHJ93b31VX1zUkuqqoPLu4c30fsZS5gNseI2dOS5D73uc8ylwEAALDfWuoVx+6+evy+JskfZeU7ip8ct5lm/L5mHH51kqMX3n7UGJuNH7XKeCZz7L6+M7r7+O4+fsuWLbf0YwIAABzQlhaOVfVNVXWXm18nOSnJ3yc5L8kp47BTkrxxvD4vyVNrxQlJbhy3m16Y5KSquvt4KM5JSS4c+z5TVSeMJ7I+dbdzrTYHAAAA67TMW1WPSPJHK02Xg5P8fnf/aVVdkuTcqjo1yUeTPHEcf35W/hTHzqz8OY6nJUl3X19VL0pyyTjuhd19/Xj9jPz/P8dxwfhJkpeuMQcAAADrtLRw7O4rkjxwlfHrkpy4yngneeYa5zoryVmrjO9I8oC9nQMAAID124g/xwEAAMB+RDgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMCUcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMCUcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMCUcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgaunhWFUHVdXfVdWbx/axVfW3VbWzql5XVYeM8W8Y2zvH/mMWzvH8MX55VT1qYXzbGNtZVacvjK86BwAAAOu3L644PjvJBxa2fynJy7r7fkluSHLqGD81yQ1j/GXjuFTV1iRPSnL/JNuSvHLE6EFJXpHk5CRbkzx5HDubAwAAgHVaajhW1VFJfjDJ74ztSvLIJK8fh5yd5HHj9faxnbH/xHH89iSv7e4vdfdHkuxM8tDxs7O7r+juLyd5bZLte5gDAACAdVr2FcdfT/LTSb42tu+Z5NPdfdPY3pXkyPH6yCRXJcnYf+M4/p/Hd3vPWuOzOQAAAFinpYVjVf1Qkmu6+93LmuPWqqrTqmpHVe249tprN3o5AAAAm9Iyrzg+PMljq+rKrNxG+sgkv5HksKo6eBxzVJKrx+urkxydJGP/3ZJctzi+23vWGr9uMsfX6e4zuvv47j5+y5Ytt/yTAgAAHMCWFo7d/fzuPqq7j8nKw23e2t0/muRtSX5kHHZKkjeO1+eN7Yz9b+3uHuNPGk9dPTbJcUneleSSJMeNJ6geMuY4b7xnrTkAAABYp434O44/k+S5VbUzK99HPHOMn5nknmP8uUlOT5LuvizJuUnen+RPkzyzu786vsP4rCQXZuWpreeOY2dzAAAAsE4H7/mQW6+7357k7eP1FVl5Iurux3wxyRPWeP9LkrxklfHzk5y/yviqcwAAALB+G3HFEQAAgP2IcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMCUcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMCUcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMDU0sKxqg6tqndV1f+tqsuq6n+O8WOr6m+ramdVva6qDhnj3zC2d479xyyc6/lj/PKqetTC+LYxtrOqTl8YX3UOAAAA1m+ZVxy/lOSR3f3AJA9Ksq2qTkjyS0le1t33S3JDklPH8acmuWGMv2wcl6ramuRJSe6fZFuSV1bVQVV1UJJXJDk5ydYkTx7HZjIHAAAA67S0cOwVnxubdxw/neSRSV4/xs9O8rjxevvYzth/YlXVGH9td3+puz+SZGeSh46fnd19RXd/Oclrk2wf71lrDgAAANZpqd9xHFcG35PkmiQXJflwkk93903jkF1Jjhyvj0xyVZKM/Tcmuefi+G7vWWv8npM5AAAAWKelhmN3f7W7H5TkqKxcIfyOZc63XlV1WlXtqKod11577UYvBwAAYFPaJ09V7e5PJ3lbku9OclhVHTx2HZXk6vH66iRHJ8nYf7ck1y2O7/aetcavm8yx+7rO6O7ju/v4LVu23KrPCAAAcKBa5lNVt1TVYeP1nZL8QJIPZCUgf2QcdkqSN47X543tjP1v7e4e408aT109NslxSd6V5JIkx40nqB6SlQfonDfes9YcAAAArNPBez7kFrtXkrPH00/vkOTc7n5zVb0/yWur6sVJ/i7JmeP4M5P8blXtTHJ9VkIw3X1ZVZ2b5P1JbkryzO7+apJU1bOSXJjkoCRndfdl41w/s8YcAAAArNPSwrG735vkwauMX5GV7zvuPv7FJE9Y41wvSfKSVcbPT3L+3s4BAADA+u2T7zgCAACw/xKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMDUwbOdVfX42f7ufsNtuxwAAAA2m2k4JnnMZF8nEY4AAAAHuGk4dvfT9tVCAAAA2Jz26juOVXVEVZ1ZVReM7a1VdepylwYAAMBmsLcPx3l1kguT3Hts/0OS5yxjQQAAAGwuexuOh3f3uUm+liTdfVOSry5tVQAAAGwaexuOn6+qe2blgTipqhOS3Li0VQEAALBp7Ompqjd7bpLzknxrVf1Vki1JfmRpqwIAAGDT2Ktw7O5Lq+r7knx7kkpyeXd/ZakrAwAAYFPYq3CsqkOTPCPJ92bldtV3VtX/7u4vLnNxAAAAbLy9vVX1nCSfTfKbY/spSX43yROWsSgAAAA2j70Nxwd099aF7bdV1fuXsSAAAAA2l719quql40mqSZKqeliSHctZEgAAAJvJ9IpjVb0vK99pvGOSv66qfxzb903yweUvDwAAgI22p1tVf2ifrAIAAIBNaxqO3f3Rxe2q+uYkhy51RQAAAGwqe/Udx6p6bFV9KMlHkvxFkiuTXLDEdQEAALBJ7O3DcV6U5IQk/9DdxyY5McnFS1sVAAAAm8behuNXuvu6JHeoqjt099uSHL/EdQEAALBJ7O3fcfx0Vd05yTuSvKaqrkny+eUtCwAAgM1ib684bk/yT0n+e5I/TfLhJI9Z1qIAAADYPPbqimN3L15dPHtJawEAAGATmoZjVX02Sa+2K0l3912XsioAAAA2jT39Hce77KuFAAAAsDnt7XccAQAAuJ0SjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMCUcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAAppYWjlV1dFW9rareX1WXVdWzx/g9quqiqvrQ+H33MV5V9fKq2llV762q71o41ynj+A9V1SkL4w+pqveN97y8qmo2BwAAAOu3zCuONyV5XndvTXJCkmdW1dYkpyd5S3cfl+QtYztJTk5y3Pg5LcmrkpUITPKCJA9L8tAkL1gIwVclefrC+7aN8bXmAAAAYJ2WFo7d/fHuvnS8/mySDyQ5Msn2JGePw85O8rjxenuSc3rFxUkOq6p7JXlUkou6+/ruviHJRUm2jX137e6Lu7uTnLPbuVabAwAAgHXaJ99xrKpjkjw4yd8mOaK7Pz52fSLJEeP1kUmuWnjbrjE2G9+1yngmcwAAALBOSw/Hqrpzkv+T5Dnd/ZnFfeNKYS9z/tkcVXVaVe2oqh3XXnvtMpcBAACw31pqOFbVHbMSja/p7jeM4U+O20wzfl8zxq9OcvTC248aY7Pxo1YZn83xdbr7jO4+vruP37Jlyy37kAAAAAe4ZT5VtZKcmeQD3f1rC7vOS3Lzk1FPSfLGhfGnjqernpDkxnG76YVJTqqqu4+H4pyU5MKx7zNVdcKY66m7nWu1OQAAAFing5d47ocn+bEk76uq94yxn03y0iTnVtWpST6a5Ilj3/lJHp1kZ5IvJHlaknT39VX1oiSXjONe2N3Xj9fPSPLqJHdKcsH4yWQOAAAA1mlp4djdf5mk1th94irHd5JnrnGus5Kctcr4jiQPWGX8utXmAAAAYP32yVNVAQAA2H8JRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMCUcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMCUcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMCUcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwtLRyr6qyquqaq/n5h7B5VdVFVfWj8vvsYr6p6eVXtrKr3VtV3LbznlHH8h6rqlIXxh1TV+8Z7Xl5VNZsDAACAW2aZVxxfnWTbbmOnJ3lLdx+X5C1jO0lOTnLc+DktyauSlQhM8oIkD0vy0CQvWAjBVyV5+sL7tu1hDgAAAG6BpYVjd78jyfW7DW9PcvZ4fXaSxy2Mn9MrLk5yWFXdK8mjklzU3dd39w1JLkqybey7a3df3N2d5JzdzrXaHAAAANwC+/o7jkd098fH608kOWK8PjLJVQvH7Rpjs/Fdq4zP5gAAAOAW2LCH44wrhb2Rc1TVaVW1o6p2XHvttctcCgAAwH5rX4fjJ8dtphm/rxnjVyc5euG4o8bYbPyoVcZnc/wL3X1Gdx/f3cdv2bLlFn8oAACAA9m+Dsfzktz8ZNRTkrxxYfyp4+mqJyS5cdxuemGSk6rq7uOhOCcluXDs+0xVnTCepvrU3c612hwAAADcAgcv68RV9QdJHpHk8KralZWno740yblVdWqSjyZ54jj8/CSPTrIzyReSPC1Juvv6qnpRkkvGcS/s7psfuPOMrDy59U5JLhg/mcwBAADALbC0cOzuJ6+x68RVju0kz1zjPGclOWuV8R1JHrDK+HWrzQEAAMAts2EPxwEAAGD/IBwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMCUcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMCUcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAIAp4QgAAMCUcAQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAAAFPCEQAAgCnhCAAAwJRwBAAAYEo4AgAAMCUcAQAAmBKOAAAATAlHAAAApoQjAAAAU8IRAACAKeEIAADAlHAEAABgSjgCAAAwdcCGY1Vtq6rLq2pnVZ2+0esBAADYXx2Q4VhVByV5RZKTk2xN8uSq2rqxqwIAANg/HZDhmOShSXZ29xXd/eUkr02yfYPXBAAAsF86UMPxyCRXLWzvGmMAAACs08EbvYCNVFWnJTltbH6uqi7fyPXAfu7wJJ/a6EXA7upXT9noJQD7jn+L2JxeUBu9gr1137V2HKjheHWSoxe2jxpjX6e7z0hyxr5aFBzIqmpHdx+/0esA4PbLv0WwPAfqraqXJDmuqo6tqkOSPCnJeRu8JgAAgP3SAXnFsbtvqqpnJbkwyUFJzuruyzZ4WQAAAPulAzIck6S7z09y/kavA25H3PYNwEbzbxEsSXX3Rq8BAACATexA/Y4jAAAAtxHhCNxqVbWtqi6vqp1VdfpGrweA25eqOquqrqmqv9/otcCBSjgCt0pVHZTkFUlOTrI1yZOrauvGrgqA25lXJ9m20YuAA5lwBG6thybZ2d1XdPeXk7w2yfYNXhMAtyPd/Y4k12/0OuBAJhyBW+vIJFctbO8aYwAAHCCEIwAAAFPCEbi1rk5y9ML2UWMMAIADhHAEbq1LkhxXVcdW1SFJnpTkvA1eEwAAtyHhCNwq3X1TkmcluTDJB5Kc292XbeyqALg9qao/SPI3Sb69qnZV1akbvSY40FR3b/QaAAAA2MRccQQAAGBKOAIAADAlHAEAAJgSjgAAAEwJRwAAAKaEIwAsQVX99TqPf0RVvXlZ6wGAW0M4AsASdPf3bPQaAOC2IhwBYAmq6nPj9yOq6u1V9fqq+mBVvaaqauzbNsYuTfL4hfd+U1WdVVXvqqq/q6rtY/w3qurnx+tHVdU7qsq/5QAs3cEbvQAAuB14cJL7J/lYkr9K8vCq2pHkt5M8MsnOJK9bOP5/JHlrd/+nqjosybuq6s+TPD/JJVX1ziQvT/Lo7v7aPvwcANxO+X8pAWD53tXdu0bkvSfJMUm+I8lHuvtD3d1Jfm/h+JOSnF5V70ny9iSHJrlPd38hydOTXJTkt7r7w/vwMwBwO+aKIwAs35cWXn81e/73t5L8cHdfvsq+70xyXZJ730ZrA4A9csURADbGB5McU1XfOrafvLDvwiT/deG7kA8ev++b5HlZufX15Kp62D5cLwC3Y8IRADZAd38xyWlJ/mQ8HOeahd0vSnLHJO+tqsuSvGhE5JlJfrK7P5bk1CS/U1WH7uOlA3A7VCtfqwAAAIDVueIIAADAlHAEAABgSjgCAAAwJRwBAACYEo4AAABMCUcAAACmhCMAAABTwhEAAICp/wcWHPV6dl0F5QAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":["from wordcloud import WordCloud, STOPWORDS\n","\n","wordcloud = WordCloud(background_color='black', stopwords = STOPWORDS,\n"," max_words = 200, max_font_size = 100, \n"," random_state = 17, width=800, height=400)\n","\n","# Word cloud are nice, but not very useful"],"metadata":{"id":"sW9CMQ5bbIA8","executionInfo":{"status":"ok","timestamp":1670620205551,"user_tz":-540,"elapsed":630,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}}},"execution_count":5,"outputs":[]},{"cell_type":"code","source":["sarcasm_data = pd.read_csv(reddit_path)\n","print(sarcasm_data.shape)\n","# sarcasm_data.head()\n","sarcasm_data.drop(['author', 'subreddit', 'score', 'ups', 'downs', 'date', 'created_utc', 'parent_comment'], axis=1, inplace=True)\n","# remove empty rows\n","sarcasm_data.dropna(inplace=True)\n","sarcasm_data.head()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":223},"id":"a2xRU2cmd2Me","executionInfo":{"status":"ok","timestamp":1670620209301,"user_tz":-540,"elapsed":3752,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"8715681d-8176-4495-dda7-bc8d28c3d026"},"execution_count":6,"outputs":[{"output_type":"stream","name":"stdout","text":["(1010826, 10)\n"]},{"output_type":"execute_result","data":{"text/plain":[" label comment\n","0 0 NC and NH.\n","1 0 You do know west teams play against west teams...\n","2 0 They were underdogs earlier today, but since G...\n","3 0 This meme isn't funny none of the \"new york ni...\n","4 0 I could use one of those tools."],"text/html":["\n"," <div id=\"df-c7fa463c-e7fc-4368-a462-669befab31b6\">\n"," <div class=\"colab-df-container\">\n"," <div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>label</th>\n"," <th>comment</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>0</th>\n"," <td>0</td>\n"," <td>NC and NH.</td>\n"," </tr>\n"," <tr>\n"," <th>1</th>\n"," <td>0</td>\n"," <td>You do know west teams play against west teams...</td>\n"," </tr>\n"," <tr>\n"," <th>2</th>\n"," <td>0</td>\n"," <td>They were underdogs earlier today, but since G...</td>\n"," </tr>\n"," <tr>\n"," <th>3</th>\n"," <td>0</td>\n"," <td>This meme isn't funny none of the \"new york ni...</td>\n"," </tr>\n"," <tr>\n"," <th>4</th>\n"," <td>0</td>\n"," <td>I could use one of those tools.</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>\n"," <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-c7fa463c-e7fc-4368-a462-669befab31b6')\"\n"," title=\"Convert this dataframe to an interactive table.\"\n"," style=\"display:none;\">\n"," \n"," <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n"," width=\"24px\">\n"," <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n"," <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n"," </svg>\n"," </button>\n"," \n"," <style>\n"," .colab-df-container {\n"," display:flex;\n"," flex-wrap:wrap;\n"," gap: 12px;\n"," }\n","\n"," .colab-df-convert {\n"," background-color: #E8F0FE;\n"," border: none;\n"," border-radius: 50%;\n"," cursor: pointer;\n"," display: none;\n"," fill: #1967D2;\n"," height: 32px;\n"," padding: 0 0 0 0;\n"," width: 32px;\n"," }\n","\n"," .colab-df-convert:hover {\n"," background-color: #E2EBFA;\n"," box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n"," fill: #174EA6;\n"," }\n","\n"," [theme=dark] .colab-df-convert {\n"," background-color: #3B4455;\n"," fill: #D2E3FC;\n"," }\n","\n"," [theme=dark] .colab-df-convert:hover {\n"," background-color: #434B5C;\n"," box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n"," filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n"," fill: #FFFFFF;\n"," }\n"," </style>\n","\n"," <script>\n"," const buttonEl =\n"," document.querySelector('#df-c7fa463c-e7fc-4368-a462-669befab31b6 button.colab-df-convert');\n"," buttonEl.style.display =\n"," google.colab.kernel.accessAllowed ? 'block' : 'none';\n","\n"," async function convertToInteractive(key) {\n"," const element = document.querySelector('#df-c7fa463c-e7fc-4368-a462-669befab31b6');\n"," const dataTable =\n"," await google.colab.kernel.invokeFunction('convertToInteractive',\n"," [key], {});\n"," if (!dataTable) return;\n","\n"," const docLinkHtml = 'Like what you see? Visit the ' +\n"," '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n"," + ' to learn more about interactive tables.';\n"," element.innerHTML = '';\n"," dataTable['output_type'] = 'display_data';\n"," await google.colab.output.renderOutput(dataTable, element);\n"," const docLink = document.createElement('div');\n"," docLink.innerHTML = docLinkHtml;\n"," element.appendChild(docLink);\n"," }\n"," </script>\n"," </div>\n"," </div>\n"," "]},"metadata":{},"execution_count":6}]},{"cell_type":"code","source":["plt.figure(figsize=(16, 12))\n","wordcloud.generate(str(sarcasm_data.loc[sarcasm_data['is_sarcastic'] == 1, 'headline']))\n","plt.imshow(wordcloud);"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":519},"id":"ZfCe2Gp5bIEk","executionInfo":{"status":"error","timestamp":1670620209302,"user_tz":-540,"elapsed":9,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"cc24c2f0-288d-459e-df76-13810114372a"},"execution_count":7,"outputs":[{"output_type":"error","ename":"KeyError","evalue":"ignored","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3360\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3361\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3362\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n","\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n","\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n","\u001b[0;31mKeyError\u001b[0m: 'is_sarcastic'","\nThe above exception was the direct cause of the following exception:\n","\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)","\u001b[0;32m<ipython-input-7-258d2153da2e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m16\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m12\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mwordcloud\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msarcasm_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0msarcasm_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'is_sarcastic'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'headline'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwordcloud\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3456\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3457\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3458\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3459\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3460\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.8/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3361\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3362\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3363\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3364\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3365\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_scalar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0misna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhasnans\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mKeyError\u001b[0m: 'is_sarcastic'"]},{"output_type":"display_data","data":{"text/plain":["<Figure size 1152x864 with 0 Axes>"]},"metadata":{}}]},{"cell_type":"code","source":["plt.figure(figsize=(16, 12))\n","wordcloud.generate(str(sarcasm_data.loc[sarcasm_data['is_sarcastic'] == 0, 'headline']))\n","plt.imshow(wordcloud);"],"metadata":{"id":"z1LCm_31eIz-","executionInfo":{"status":"aborted","timestamp":1670620209303,"user_tz":-540,"elapsed":8,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}}},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["sarcasm_data.loc[sarcasm_data['label'] == 1, 'comment'].str.len().apply(np.log1p).hist(label='sarcastic', alpha=.5)\n","sarcasm_data.loc[sarcasm_data['label'] == 0, 'comment'].str.len().apply(np.log1p).hist(label='normal', alpha=.5)\n","plt.legend();"],"metadata":{"id":"2ape-DtOiWuB","executionInfo":{"status":"aborted","timestamp":1670620209303,"user_tz":-540,"elapsed":8,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}}},"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"nSxV6ZJNJeM2"},"source":["**splitting the data**"]},{"cell_type":"code","execution_count":8,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":460,"status":"ok","timestamp":1670620506626,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"},"user_tz":-540},"id":"pxBHEw-s6FTa","outputId":"43f9d1d4-5da0-4bb6-9520-3baa7982646f"},"outputs":[{"output_type":"stream","name":"stdout","text":["(1010773, 1)\n","(55328, 1)\n","(1010773, 1)\n","(55328, 1)\n"]}],"source":["print(reddit_data.shape)\n","print(headline_data.shape)\n","print(reddit_label.shape)\n","print(headline_label.shape)"]},{"cell_type":"code","execution_count":9,"metadata":{"executionInfo":{"elapsed":2,"status":"ok","timestamp":1670620507089,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"},"user_tz":-540},"id":"uRyh6mbuH-7J"},"outputs":[],"source":["train_text, val_text, train_labels, val_labels = train_test_split(reddit_data, reddit_label, test_size=0.1)"]},{"cell_type":"code","execution_count":10,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":2,"status":"ok","timestamp":1670620508023,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"},"user_tz":-540},"id":"XCZauik0EJpE","outputId":"85733084-8403-4d50-9d34-47c9ec13e18c"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["numpy.ndarray"]},"metadata":{},"execution_count":10}],"source":["y_train = train_labels[\"label\"].to_numpy()\n","y_test = val_labels[\"label\"].to_numpy()\n","type(y_train)"]},{"cell_type":"code","source":["print(\"training: \", train_text.shape)\n","print(\"testing : \", val_text.shape)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"zBoAqyPsJ6SM","executionInfo":{"status":"ok","timestamp":1670620508504,"user_tz":-540,"elapsed":2,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"934180f7-b49c-425c-b591-cb1f7e14b167"},"execution_count":11,"outputs":[{"output_type":"stream","name":"stdout","text":["training: (909695, 1)\n","testing : (101078, 1)\n"]}]},{"cell_type":"markdown","metadata":{"id":"zOztdCrUJhL6"},"source":["**Tokenizing the data**"]},{"cell_type":"code","execution_count":12,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":305,"referenced_widgets":["66f516da9843419bba73a488590797e7","0eeee9b8cac34bfe8b12cf5e786dc5be","3fd403d505d74836a9bc4a736e15d611","ad939bde2ccd4554950a7ea48f70d2fa","62cd2ee3e1304199bdfd2767ca4af5c4","4caab5a4eb4841b1b5ab5577ee7b47c4","cd79448732e2416ba86487e2e7e9094f","3dbc38f422b74201b8bf7d1c20801442","9c47d3ec0b304b05a52fe6d388b9ca0a","7535023e735d4b5981cf83e230447ae3","47fea0703de84bee96c9c83bfa5117d3","62bfab077f034d75b4c2946eee044d4d","51845aaddc1f43f8aa5dc2aab626ef8d","dfa4063f14d54c9bb9c569d066ed18ba","3b16c940d981401b865f84ac6cc1ac90","892ed9c0e0e04be29fa6ff856b21c330","11830585b17348ab8a0603053b5b0618","a64cef0cddc34aceafd41189a4c3f494","4efb44693b7b4a6abd9e82a4ea229383","3ea58173ff1e473da8fd1384528e1ebf","26361bca567c466796e66f99b7ef8b47","23a80c57060a496fad9f64d59e977174","c4207607b8e148af8ee97d8e1db7286e","53385de35c144ae3afe8ecb3ef47eda7","5aa4034c4254451c8ceb12217aa935c8","b8be0da12a2d4ba581547c54af120c5a","29b6c7fb223c464f95d2b04996460757","d710bcb43c4f441b8c0907992a1a937d","a0e6abc6b8af4a53bb818d45fd5cf3fe","92c1232adb424d7da27d400ed40567c4","4aa729d46e3c4b0daa51ae5f5a9f2dc7","2df72da61d3947bbab7a5beb7e285d4d","c92029b996ea43fbbce22a31eedac533","9bf593b74fd84e1f9d2a93ca4723b7f4","f0695cd7eb47484da37af8ed4e20463a","33cd32b8540d4ca399ef3fa0f165d10d","ae9a0c12300c43dc8533adcce5b54e0b","54381be196724cf78d7274fca4ac494e","e2701a7411ad4b359081dc3d88af96bc","1e1b8481154b41689da0edc6cba00b57","1d6493dc10ba4671975112cc9a7e56b0","edd115f7bf7148b096e16269f8e954ae","a8a56da44e96499eb0bee15e53f2192c","60048e0ade734f5a9347a46b3defbf34","60c8047b61d24a56afd820056cbdf3b4","b2359319833d4df5b2c877dd5381040f","97076d5131ba4b209d641522212ee5ef","15b18682162f48f2a21f909ceea1d870","905126f237e54b52b187302cac3c00ec","29fff80216514cbf98540ad57d4731e8","d47d23cafc774d289036fc6438289e90","0c25af416ff54babb4ad182daf981479","e445b309610343ffad95b4868e1a64f6","174b538f457a4c5f91b8f43040331672","248e6154420142ed89290df90dcf35f8","eccfad9a573946b4ab814a534ea59e0d","c00baf90b75e4c0aaea15c2d7a2dd152","0f74c1cdc9ee43fab5f478f19a3cbf08","d780d8d2d08f44f9a59bbf239234928c","6e35bab8e3914b8fa8a5947b00c26418","ccf44f04b1ab497a9f4c48d0a1f054e9","52af8d2b6d7e4f27847717d3884aac93","a51e7d4849f84a3c9f91ffb13b7ff9c8","514d368387e04561830c54cca4792e3e","62f12f2815fa4be6af506f0e83ae0a31","f90554be647a45aa9ead732bba2d2829","cea579065429492994985306f09a76ac","742a22e2b15649c09ea544d5ceabb7c2","1b2540364181431c94b949b16e1936b6","559ae56a2c214842962dd9e71a7472b0","82c8767aa0c14a83816843c330ba98fd","d22450f05753463087387ee6b60f5445","ef555153f0784cdb952b72ce2afdee6a","0d79b0eb124d439baec5867d803f3da5","0befabf434da470387cdddd065157f77","ae00a33c611e4b688d7094059a019a57","ea20208b43fb468ab2e4cdd7ad7525a5","5501120ff0384883b5a711a9db4cb173","9467794698a7405e878778d88b467a50","d9c47160c281475a967e3e6b7682b1ad","3b874b63434b4df893864af836006a67","28635602ddaa4a94a72539b408b78304","28824996486347e3a12c45264a1fe3af","2dc1e35e83424302a116466bb404e42b","0f4920c2f69e43a0b67817aa32cd7061","74f918f081514c92be4175321a974d5a","1677722e695d483fa53455796491dac9","bc82864c20f14cc7a23861807c757915","f112485077df4b6699152f0df9f64401","8ff9709a9b6f4d8fb8d70c00fc0ee7a3","2fdeaf4420dc4507ad89100fb59d5193","02fcb25961414b5dad12c6d075ba23e5","541651eaeaa7439d823c9b0587755298","0b53f2df36e74429bbcebee4e8781884","b82799e323964fadaab21616a36ef3d4","12a0ba86c5ec4b87b6b980fa20dc9284","b4a1533b3d514069b7e74eadbafc4aca","d3351379cade45bbae7d49183ae3dc4e","a00ce39dab4b40a49b4b7d7dff2895e3"]},"executionInfo":{"elapsed":30513,"status":"ok","timestamp":1670620539667,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"},"user_tz":-540},"id":"uKTMExz9H-9H","outputId":"88b86a52-e0e4-42f8-9da3-df3057b8b90a"},"outputs":[{"output_type":"display_data","data":{"text/plain":["Downloading: 0%| | 0.00/232k [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"66f516da9843419bba73a488590797e7"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["Downloading: 0%| | 0.00/28.0 [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"62bfab077f034d75b4c2946eee044d4d"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["Downloading: 0%| | 0.00/570 [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"c4207607b8e148af8ee97d8e1db7286e"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["Downloading: 0%| | 0.00/899k [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"9bf593b74fd84e1f9d2a93ca4723b7f4"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["Downloading: 0%| | 0.00/456k [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"60c8047b61d24a56afd820056cbdf3b4"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["Downloading: 0%| | 0.00/481 [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"eccfad9a573946b4ab814a534ea59e0d"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["Downloading: 0%| | 0.00/232k [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"cea579065429492994985306f09a76ac"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["Downloading: 0%| | 0.00/28.0 [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"5501120ff0384883b5a711a9db4cb173"}},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["Downloading: 0%| | 0.00/483 [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"f112485077df4b6699152f0df9f64401"}},"metadata":{}}],"source":["import tensorflow as tf\n","from transformers import BertTokenizer, TFBertModel\n","from transformers import DistilBertTokenizer, TFDistilBertModel\n","from transformers import RobertaTokenizer, TFRobertaModel\n","\n","tokenizer_bert = BertTokenizer.from_pretrained('bert-base-uncased')\n","tokenizer_roberta = RobertaTokenizer.from_pretrained('roberta-base')\n","tokenizer_distilbert = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')\n","\n","train_dd = list(train_text[\"comment\"])\n","val_dd = list(val_text[\"comment\"])\n"]},{"cell_type":"markdown","metadata":{"id":"ivQtz3j3KkES"},"source":["**Modelling Roberta**"]},{"cell_type":"code","execution_count":13,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":393,"referenced_widgets":["e80c48a2413f46f0b18071d8ae292c71","d109089e80ce403d8d0f7736a27ab803","a9aa65910ba44084819416b4412b3dbb","ebeff3c03669409ea0487721ca59da2b","fe5b84997c544e3ba5949ab33c279a21","298d530c6c2247aab4a014ad79989de6","bc8b468e9e4d47c888ccab132d65a7dd","ec3580f186d64171bc23e64b2a639178","eff4843c08954d63ae2eccb762a7c489","c7be6070eeca4eb7a69a2a451ecd5fe7","ff7ade4160a84910a9952bae5448e891","dafdaf89e1c14703a022e80e01d2342d","8b64ba2f1b6b49aead1dec5ff94686ae","fe8937303659488893d23291809dcdc0","a4004a8d732e4e9b91b3209b6e448581","55123e275855429a9d138c7f2098292c","a0bb419b20a145ff848212d1b5a06108","62cecf54689044a8bc5e974127b9dceb","eb1c36074cba4a5f8de70f76504c4b3e","e2b99060ac4c4107942165b5beb8fb9d","8c46b30c48ac4ba5b5946f7650ef5a6d","259cd37d7eb047218859f66c1523ce7a","cd5eba09bee74059af917bf065c5bb06","e857a9d9a01f4e328e03de25c0209cf4","6f53f77ed1a64c89a08d319319c98c90","bdaaba19bb8c4bf5ad5e1386c1a3fa88","f5740c9c625348ceb620e529f614d562","db4620b626164488ae7bfcd49092922c","4e028a3e5d3d43698e7d4c5e81c8a9d6","37c19bbc280041a295522cedd16c76ab","77761712628c4def934c228ccdc75a7e","e3e33456431e489e8800162b4424eef2","772d5f73185a4863b42045533eba6db7"]},"executionInfo":{"elapsed":43369,"status":"ok","timestamp":1670620583028,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"},"user_tz":-540},"id":"z3oAMVIFH_At","outputId":"764721aa-4273-40b1-9563-0a4a2180b9e2"},"outputs":[{"output_type":"display_data","data":{"text/plain":["Downloading: 0%| | 0.00/536M [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"e80c48a2413f46f0b18071d8ae292c71"}},"metadata":{}},{"output_type":"stream","name":"stderr","text":["Some layers from the model checkpoint at bert-base-uncased were not used when initializing TFBertModel: ['mlm___cls', 'nsp___cls']\n","- This IS expected if you are initializing TFBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n","- This IS NOT expected if you are initializing TFBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n","All the layers of TFBertModel were initialized from the model checkpoint at bert-base-uncased.\n","If your task is similar to the task the model of the checkpoint was trained on, you can already use TFBertModel for predictions without further training.\n"]},{"output_type":"display_data","data":{"text/plain":["Downloading: 0%| | 0.00/657M [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"dafdaf89e1c14703a022e80e01d2342d"}},"metadata":{}},{"output_type":"stream","name":"stderr","text":["Some layers from the model checkpoint at roberta-base were not used when initializing TFRobertaModel: ['lm_head']\n","- This IS expected if you are initializing TFRobertaModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n","- This IS NOT expected if you are initializing TFRobertaModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n","All the layers of TFRobertaModel were initialized from the model checkpoint at roberta-base.\n","If your task is similar to the task the model of the checkpoint was trained on, you can already use TFRobertaModel for predictions without further training.\n"]},{"output_type":"display_data","data":{"text/plain":["Downloading: 0%| | 0.00/363M [00:00<?, ?B/s]"],"application/vnd.jupyter.widget-view+json":{"version_major":2,"version_minor":0,"model_id":"cd5eba09bee74059af917bf065c5bb06"}},"metadata":{}},{"output_type":"stream","name":"stderr","text":["Some layers from the model checkpoint at distilbert-base-uncased were not used when initializing TFDistilBertModel: ['activation_13', 'vocab_layer_norm', 'vocab_transform', 'vocab_projector']\n","- This IS expected if you are initializing TFDistilBertModel from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n","- This IS NOT expected if you are initializing TFDistilBertModel from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n","All the layers of TFDistilBertModel were initialized from the model checkpoint at distilbert-base-uncased.\n","If your task is similar to the task the model of the checkpoint was trained on, you can already use TFDistilBertModel for predictions without further training.\n"]}],"source":["import tensorflow.keras as keras \n","\n","bert_base = TFBertModel.from_pretrained(\"bert-base-uncased\")\n","roberta_base = TFRobertaModel.from_pretrained('roberta-base')\n","distilbert_base = TFDistilBertModel.from_pretrained(\"distilbert-base-uncased\")\n","\n","def bert_encode(texts, tokenizer, max_len=512):\n"," all_tokens = []\n"," all_masks = []\n"," all_segments = []\n"," \n"," for text in texts:\n"," text = tokenizer.tokenize(text)\n"," # text = tokenizer(text, padding=\"max_length\", truncation=True, max_length = max_len, return_tensors='tf')\n"," \n"," text = text[:max_len-2]\n"," input_sequence = [\"[CLS]\"] + text + [\"[SEP]\"]\n"," pad_len = max_len - len(input_sequence)\n"," \n"," tokens = tokenizer.convert_tokens_to_ids(input_sequence) + [0] * pad_len\n"," pad_masks = [1] * len(input_sequence) + [0] * pad_len\n"," segment_ids = [0] * max_len\n"," \n"," all_tokens.append(tokens)\n"," all_masks.append(pad_masks)\n"," all_segments.append(segment_ids)\n"," \n"," return np.array(all_tokens), np.array(all_masks), np.array(all_segments)\n","\n","\n","def distilbert_encode(texts, tokenizer, max_len=512):\n"," all_tokens = []\n"," \n"," for text in texts:\n"," text = tokenizer.tokenize(text)\n"," \n"," text = text[:max_len-2]\n"," input_sequence = [\"[CLS]\"] + text + [\"[SEP]\"]\n"," pad_len = max_len - len(input_sequence)\n"," \n"," tokens = tokenizer.convert_tokens_to_ids(input_sequence)\n"," tokens += [0] * pad_len\n"," pad_masks = [1] * len(input_sequence) + [0] * pad_len\n"," segment_ids = [0] * max_len\n"," \n"," all_tokens.append(tokens)\n"," \n"," return np.array(all_tokens)\n","\n","def roberta_encode(texts, tokenizer, max_len=512):\n"," all_tokens = []\n"," all_masks = []\n"," all_segments = []\n"," \n"," for text in texts:\n"," text = tokenizer.tokenize(text)\n"," # text = tokenizer(text, padding=\"max_length\", truncation=True, max_length = max_len, return_tensors='tf')\n"," \n"," text = text[:max_len-2]\n"," input_sequence = [\"[CLS]\"] + text + [\"[SEP]\"]\n"," pad_len = max_len - len(input_sequence)\n"," \n"," tokens = tokenizer.convert_tokens_to_ids(input_sequence) + [0] * pad_len\n"," pad_masks = [1] * len(input_sequence) + [0] * pad_len\n"," segment_ids = [0] * max_len\n"," \n"," all_tokens.append(tokens)\n"," all_masks.append(pad_masks)\n"," all_segments.append(segment_ids)\n"," \n"," return np.array(all_tokens), np.array(all_masks), np.array(all_segments)\n","\n","def build_bert_model(bert_layer, max_len=512):\n"," input_word_ids = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name=\"input_word_ids\")\n"," input_mask = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name=\"input_mask\")\n"," segment_ids = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name=\"segment_ids\")\n"," \n"," bert_layer.trainable = False\n"," sequence_output = bert_layer([input_word_ids, input_mask, segment_ids])\n"," clf_output = sequence_output[0]\n"," net = tf.keras.layers.Bidirectional(keras.layers.GRU(246, return_sequences=True))(clf_output)\n"," net = tf.keras.layers.Dropout(0.3)(net)\n"," net = tf.keras.layers.Bidirectional(keras.layers.GRU(246, return_sequences=True))(net)\n"," net = tf.keras.layers.Dropout(0.2)(net)\n"," net = tf.keras.layers.Bidirectional(keras.layers.GRU(146))(net)\n"," net = tf.keras.layers.Dropout(0.3)(net)\n"," net = tf.keras.layers.Dense(124, activation='relu')(net)\n"," out = tf.keras.layers.Dense(2, activation='softmax')(net)\n"," \n"," model = tf.keras.models.Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=out)\n"," model.compile(tf.keras.optimizers.Adam(lr=5e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n"," \n"," return model\n","\n","\n","def build_distilbert_model(distilbert_layer, max_len=512):\n"," distilbert_layer.trainable = False\n"," input_word_ids = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name=\"input_word_ids\")\n"," sequence_output = distilbert_layer(input_word_ids)[0]\n"," clf_output = sequence_output\n","\n"," net = tf.keras.layers.Bidirectional(keras.layers.GRU(246, return_sequences=True))(clf_output)\n"," net = tf.keras.layers.Dropout(0.3)(net)\n"," net = tf.keras.layers.Bidirectional(keras.layers.GRU(246, return_sequences=True))(net)\n"," net = tf.keras.layers.Dropout(0.1)(net)\n"," net = tf.keras.layers.Bidirectional(keras.layers.GRU(146))(net)\n"," net = tf.keras.layers.Dropout(0.3)(net)\n"," net = tf.keras.layers.Dense(124, activation='relu')(net)\n"," # net = tf.keras.layers.Dropout(0.2)(net)\n"," out = tf.keras.layers.Dense(2, activation='softmax')(net)\n","\n"," # distilbert_layer.trainable = False\n"," # input_word_ids = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name=\"input_word_ids\")\n"," # sequence_output = distilbert_layer(input_word_ids)[0]\n"," # clf_output = sequence_output\n","\n"," # net = tf.keras.layers.Bidirectional(keras.layers.GRU(246, return_sequences=True))(clf_output)\n"," # net = tf.keras.layers.Dropout(0.3)(net)\n"," # net = tf.keras.layers.Bidirectional(keras.layers.GRU(246, return_sequences=True))(net)\n"," # net = tf.keras.layers.Dropout(0.1)(net)\n"," # net = tf.keras.layers.Bidirectional(keras.layers.GRU(146))(net)\n"," # net = tf.keras.layers.Dropout(0.3)(net)\n"," # net = tf.keras.layers.Dense(124, activation='relu')(net)\n"," # out = tf.keras.layers.Dense(2, activation='softmax')(net)\n"," \n"," # model = tf.keras.models.Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=out)\n"," model = tf.keras.models.Model(inputs=input_word_ids, outputs=out)\n","\n","\n"," model.compile(tf.keras.optimizers.Adam(lr=5e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n"," \n"," return model\n","\n","\n","def build_roberta_model(roberta_layer, max_len=512):\n"," input_word_ids = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name=\"input_word_ids\")\n"," input_mask = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name=\"input_mask\")\n"," segment_ids = tf.keras.Input(shape=(max_len,), dtype=tf.int32, name=\"segment_ids\")\n"," \n"," roberta_layer.trainable = False\n"," sequence_output = roberta_layer([input_word_ids, input_mask, segment_ids])\n"," clf_output = sequence_output[0]\n"," net = tf.keras.layers.Bidirectional(keras.layers.GRU(246, return_sequences=True))(clf_output)\n"," net = tf.keras.layers.Dropout(0.3)(net)\n"," net = tf.keras.layers.Bidirectional(keras.layers.GRU(146))(net)\n"," net = tf.keras.layers.Dropout(0.3)(net)\n"," # net = tf.keras.layers.Conv1D(246, 1)(clf_output)\n"," # net = tf.keras.layers.Dropout(0.3)(net)\n"," # net = tf.keras.layers.Conv1D(128, 1)(net)\n"," # net = tf.keras.layers.Dropout(0.3)(net)\n"," # net = tf.keras.layers.Flatten()(net)\n"," # net = tf.keras.layers.GlobalMaxPool1D()(net)\n"," net = tf.keras.layers.Dense(124, activation='relu')(net)\n"," # net = tf.keras.layers.Dropout(0.2)(net)\n"," out = tf.keras.layers.Dense(2, activation='softmax')(net)\n"," \n"," model = tf.keras.models.Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=out)\n"," # model = tf.keras.models.Model(inputs=input_word_ids, outputs=out)\n"," model.compile(tf.keras.optimizers.Adam(lr=5e-5), loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n"," \n"," return model"]},{"cell_type":"code","execution_count":14,"metadata":{"id":"koe0hq_aJvxa","executionInfo":{"status":"ok","timestamp":1670621306105,"user_tz":-540,"elapsed":723085,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}}},"outputs":[],"source":["max_len = 100\n","## bert encode\n","X_train_bert = bert_encode(train_dd, tokenizer_bert, max_len=max_len)\n","X_val_bert = bert_encode(val_dd, tokenizer_bert, max_len=max_len)\n","## Roberta encode\n","X_train_roberta = roberta_encode(train_dd, tokenizer_roberta, max_len=max_len)\n","X_val_roberta = roberta_encode(val_dd, tokenizer_roberta, max_len=max_len)\n","## Distilbert encode\n","X_train_distil = distilbert_encode(train_dd, tokenizer_distilbert, max_len=max_len)\n","X_val_distil = distilbert_encode(val_dd, tokenizer_distilbert, max_len=max_len)"]},{"cell_type":"code","execution_count":15,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":12701,"status":"ok","timestamp":1670621318803,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"},"user_tz":-540},"id":"QQ5YehpWJxNn","outputId":"7b36c627-2bae-4b10-8f6e-4c10e8380e6c"},"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.8/dist-packages/keras/optimizers/optimizer_v2/adam.py:110: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n"," super(Adam, self).__init__(name, **kwargs)\n"]}],"source":["# build model\n","max_len = 100\n","model_bert = build_bert_model(bert_base, max_len=max_len)\n","model_roberta = build_roberta_model(roberta_base, max_len=max_len)\n","model_distilbert = build_distilbert_model(distilbert_base, max_len=max_len)\n","\n","# model.summary()"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"background_save":true,"base_uri":"https://localhost:8080/"},"id":"mTWO8X27J_Y8","outputId":"3d1c38f5-74e9-4652-fb48-c236b47c360b"},"outputs":[{"name":"stdout","output_type":"stream","text":["Epoch 1/10\n","28428/28428 [==============================] - ETA: 0s - loss: 0.5622 - accuracy: 0.7044\n","Epoch 1: val_accuracy improved from -inf to 0.72784, saving model to /content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/BERT/model_e10/model.h5\n","28428/28428 [==============================] - 2120s 74ms/step - loss: 0.5622 - accuracy: 0.7044 - val_loss: 0.5317 - val_accuracy: 0.7278\n","Epoch 2/10\n","28428/28428 [==============================] - ETA: 0s - loss: 0.5314 - accuracy: 0.7285\n","Epoch 2: val_accuracy improved from 0.72784 to 0.74042, saving model to /content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/BERT/model_e10/model.h5\n","28428/28428 [==============================] - 2093s 74ms/step - loss: 0.5314 - accuracy: 0.7285 - val_loss: 0.5156 - val_accuracy: 0.7404\n","Epoch 3/10\n","28428/28428 [==============================] - ETA: 0s - loss: 0.5156 - accuracy: 0.7399\n","Epoch 3: val_accuracy improved from 0.74042 to 0.74835, saving model to /content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/BERT/model_e10/model.h5\n","28428/28428 [==============================] - 2098s 74ms/step - loss: 0.5156 - accuracy: 0.7399 - val_loss: 0.5044 - val_accuracy: 0.7484\n","Epoch 4/10\n","28428/28428 [==============================] - ETA: 0s - loss: 0.5048 - accuracy: 0.7481\n","Epoch 4: val_accuracy improved from 0.74835 to 0.75239, saving model to /content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/BERT/model_e10/model.h5\n","28428/28428 [==============================] - 2090s 74ms/step - loss: 0.5048 - accuracy: 0.7481 - val_loss: 0.5010 - val_accuracy: 0.7524\n","Epoch 5/10\n","28428/28428 [==============================] - ETA: 0s - loss: 0.4963 - accuracy: 0.7541\n","Epoch 5: val_accuracy improved from 0.75239 to 0.75454, saving model to /content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/BERT/model_e10/model.h5\n","28428/28428 [==============================] - 2105s 74ms/step - loss: 0.4963 - accuracy: 0.7541 - val_loss: 0.4972 - val_accuracy: 0.7545\n","Epoch 6/10\n","28428/28428 [==============================] - ETA: 0s - loss: 0.4881 - accuracy: 0.7598\n","Epoch 6: val_accuracy improved from 0.75454 to 0.76177, saving model to /content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/BERT/model_e10/model.h5\n","28428/28428 [==============================] - 2106s 74ms/step - loss: 0.4881 - accuracy: 0.7598 - val_loss: 0.4882 - val_accuracy: 0.7618\n","Epoch 7/10\n","28428/28428 [==============================] - ETA: 0s - loss: 0.4806 - accuracy: 0.7647\n","Epoch 7: val_accuracy improved from 0.76177 to 0.76332, saving model to /content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/BERT/model_e10/model.h5\n","28428/28428 [==============================] - 2104s 74ms/step - loss: 0.4806 - accuracy: 0.7647 - val_loss: 0.4871 - val_accuracy: 0.7633\n","Epoch 8/10\n","28428/28428 [==============================] - ETA: 0s - loss: 0.4741 - accuracy: 0.7692\n","Epoch 8: val_accuracy improved from 0.76332 to 0.76475, saving model to /content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/BERT/model_e10/model.h5\n","28428/28428 [==============================] - 2082s 73ms/step - loss: 0.4741 - accuracy: 0.7692 - val_loss: 0.4874 - val_accuracy: 0.7647\n","Epoch 9/10\n","28428/28428 [==============================] - ETA: 0s - loss: 0.4677 - accuracy: 0.7737\n","Epoch 9: val_accuracy did not improve from 0.76475\n","28428/28428 [==============================] - 2086s 73ms/step - loss: 0.4677 - accuracy: 0.7737 - val_loss: 0.4852 - val_accuracy: 0.7645\n","Epoch 10/10\n","28428/28428 [==============================] - ETA: 0s - loss: 0.4615 - accuracy: 0.7771\n","Epoch 10: val_accuracy did not improve from 0.76475\n","28428/28428 [==============================] - 2099s 74ms/step - loss: 0.4615 - accuracy: 0.7771 - val_loss: 0.4851 - val_accuracy: 0.7643\n","CPU times: user 6h 25min 16s, sys: 54min 18s, total: 7h 19min 34s\n","Wall time: 5h 49min 46s\n"]}],"source":["# # training\n","\n","# %%time\n","# checkpoint = tf.keras.callbacks.ModelCheckpoint('/content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/BERT/model_e10/model.h5', monitor='val_accuracy', save_best_only=True, verbose=1)\n","# earlystopping = tf.keras.callbacks.EarlyStopping(monitor='val_accuracy', patience=3, verbose=1)\n","\n","# train_history = model.fit(\n","# X_train, y_train,\n","# validation_data=(X_val, y_test),\n","# # validation_split=0.1,\n","# epochs=10,\n","# callbacks=[checkpoint, earlystopping],\n","# batch_size=32,\n","# verbose=1\n","# )\n","\n","# # model save weights\n","\n","# # model.save_weights('/content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/distil_h5/weights.h5')"]},{"cell_type":"markdown","metadata":{"id":"TKruNO5IaZkJ"},"source":["**Loading Model**"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":158474,"status":"ok","timestamp":1669022754366,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"},"user_tz":-540},"id":"BY3tRwXMKG0e","outputId":"92cde15f-ec7e-41ed-e15a-748fb02fe3a5"},"outputs":[{"output_type":"stream","name":"stdout","text":["3159/3159 [==============================] - 155s 47ms/step\n","Validation accuracy: 0.7872534082589683\n","CPU times: user 2min 56s, sys: 24.6 s, total: 3min 21s\n","Wall time: 2min 39s\n"]}],"source":["# %%time\n","# model.load_weights('/content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/BERT/model_e10/model.h5')\n","# y_preds = model.predict(X_val).round().astype(int).argmax(axis=-1)\n","# print(\"Validation accuracy: \", sklearn.metrics.accuracy_score(y_test, y_preds))"]},{"cell_type":"markdown","source":["**Load 3 different models for ensembles**"],"metadata":{"id":"E-QKOiMNxUMO"}},{"cell_type":"code","execution_count":16,"metadata":{"id":"-UYVfxz_KG37","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1670621341394,"user_tz":-540,"elapsed":20370,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"cdf4a867-b573-4e7f-9cd2-da9b39d5187a"},"outputs":[{"output_type":"stream","name":"stdout","text":["CPU times: user 952 ms, sys: 744 ms, total: 1.7 s\n","Wall time: 22.4 s\n"]}],"source":["%%time\n","model_bert.load_weights('/content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/BERT/model_e10/model.h5')\n","model_roberta.load_weights('/content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/roberta/model_e10/model.h5')\n","model_distilbert.load_weights('/content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/distilbert/model_e10_updated/model.h5')"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"se_lBORE8Nz2"},"outputs":[],"source":["# %%time\n","# models = [model_bert, model_roberta, model_distilbert]\n","# preds = [model.predict(X_val_bert) for model in models]\n","# preds = np.array(preds)\n","# weights = [0.4, 0.4, 0.1]\n","\n","# weighted_preds = np.tensordot(preds, weights, axes = ((0), (0)))\n","# weighted_ensemble_prediction = np.argmax(weighted_preds, axis = 1)\n","\n","# weighted_accuracy = sklearn.metrics.accuracy_score(y_test, weighted_ensemble_prediction)\n","# print(\"Weighted Validation accuracy is: \", weighted_accuracy)\n"]},{"cell_type":"code","source":["%%time\n","models = [model_bert, model_roberta, model_distilbert]\n","x_vals = [X_val_bert, X_val_roberta, X_val_distil] \n","\n","preds = [model.predict(x_vals[i]) for i, model in enumerate(models)]\n","preds = np.array(preds)\n","weights = [0.5, 0.4, 0.1]\n","\n","weighted_preds = np.tensordot(preds, weights, axes = ((0), (0)))\n","weighted_ensemble_prediction = np.argmax(weighted_preds, axis = 1)\n","\n","weighted_accuracy = sklearn.metrics.accuracy_score(y_test, weighted_ensemble_prediction)\n","print(\"Weighted Validation accuracy is: \", weighted_accuracy)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"6jVJALsONkjz","executionInfo":{"status":"ok","timestamp":1670623133923,"user_tz":-540,"elapsed":1783175,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"ef5085f5-bd21-48dc-ec24-5c67c7a09141"},"execution_count":17,"outputs":[{"output_type":"stream","name":"stdout","text":["3159/3159 [==============================] - 719s 226ms/step\n","3159/3159 [==============================] - 679s 214ms/step\n","3159/3159 [==============================] - 382s 120ms/step\n","Weighted Validation accuracy is: 0.793298244919765\n","CPU times: user 10min 53s, sys: 1min 53s, total: 12min 46s\n","Wall time: 29min 42s\n"]}]},{"cell_type":"code","execution_count":18,"metadata":{"id":"SzQLw25r0GAX","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1670623178714,"user_tz":-540,"elapsed":489,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"47bc63f9-0c6e-4ffd-bfc2-a451d4260537"},"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([[43117, 7672],\n"," [13221, 37068]])"]},"metadata":{},"execution_count":18}],"source":["# Confusion matrix\n","\n","from sklearn.metrics import confusion_matrix\n","cm = confusion_matrix(y_test, weighted_ensemble_prediction)\n","cm"]},{"cell_type":"code","source":["from sklearn.metrics import classification_report\n","print(classification_report(y_test, weighted_ensemble_prediction, target_names = ['Not Sarcastic','Sarcastic']))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"EVpcdR_my0bh","executionInfo":{"status":"ok","timestamp":1670623186896,"user_tz":-540,"elapsed":2,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"3378ff21-90da-4176-a773-531a6860a2d4"},"execution_count":19,"outputs":[{"output_type":"stream","name":"stdout","text":[" precision recall f1-score support\n","\n","Not Sarcastic 0.77 0.85 0.80 50789\n"," Sarcastic 0.83 0.74 0.78 50289\n","\n"," accuracy 0.79 101078\n"," macro avg 0.80 0.79 0.79 101078\n"," weighted avg 0.80 0.79 0.79 101078\n","\n"]}]},{"cell_type":"code","source":["import seaborn as sns\n","\n","plt.figure(figsize = (15,10))\n","sns.heatmap(cm, cmap= \"Blues\", linecolor = 'black' , linewidth = 1 , annot = True, fmt='')\n","plt.xlabel(\"Predicted\")\n","plt.ylabel(\"Actual\")"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":623},"id":"AROSf5JJy0gS","executionInfo":{"status":"ok","timestamp":1670623193983,"user_tz":-540,"elapsed":4,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"f1b3d33c-65f0-49a2-a6f1-0651123ec6c1"},"execution_count":20,"outputs":[{"output_type":"execute_result","data":{"text/plain":["Text(114.0, 0.5, 'Actual')"]},"metadata":{},"execution_count":20},{"output_type":"display_data","data":{"text/plain":["<Figure size 1080x720 with 2 Axes>"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAzYAAAJNCAYAAADj3eD3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dZ7xlVX0//s93ht6kqIiAUsSCxGAJkp9RUUQGNMFCDDaIEkejxB5FjQWVRP8hosaWUVBslKhRoiCigkiUqogUywgoHQMDKL2s/4O7mVxg7p47wNyZBe+3r/3inLXX3med82Cc73zWWrtaawEAAOjZrGU9AAAAgLtLYQMAAHRPYQMAAHRPYQMAAHRPYQMAAHRPYQMAAHRvhWU9gKlUlX2oAQBY6lprtazHMB2rPnavGfv78XU//VgXv8lky21hkySrbP2aZT0EgG5cf9rHkyTX3eTfhQCma9UVu/v7O1MwFQ0AAOjecp3YAAAAg5JJjPHrAAAA3ZPYAABAD8p6oDESGwAAoHsSGwAA6IE1NqP8OgAAQPckNgAA0ANrbEZJbAAAgO5JbAAAoAfW2Izy6wAAAN2T2AAAQA+ssRklsQEAALqnsAEAALpnKhoAAPTA5gGj/DoAAED3JDYAANADmweMktgAAADdk9gAAEAPrLEZ5dcBAAC6J7EBAIAeWGMzSmIDAAB0T2IDAAA9sMZmlF8HAADonsQGAAB6YI3NKIkNAADQPYkNAAD0wBqbUX4dAACgexIbAADogcRmlF8HAADonsIGAADonqloAADQg1m2ex4jsQEAALonsQEAgB7YPGCUXwcAAOiexAYAAHpQ1tiMkdgAAADdk9gAAEAPrLEZ5dcBAAC6J7EBAIAeWGMzSmIDAAB0T2IDAAA9sMZmlF8HAABYYlU1u6p+WlXfHN5vWlUnVtX8qjq0qlYa2lce3s8fzm8y6R5vG9p/WVU7TmqfM7TNr6q9pzMehQ0AAPSgauaO6XldkrMnvf9gkv1baw9LsiDJnkP7nkkWDO37D/1SVVsm2S3Jo5PMSfKJoVianeTjSXZKsmWSFw59RylsAACAJVJVGyV5VpLPDO8rydOTfGXoclCS5wyvdxneZzi//dB/lySHtNZuaK2dm2R+km2GY35r7ZzW2o1JDhn6jrLGBgAAerB8rbH5cJK3JFlzeL9ekitbazcP7y9IsuHwesMk5ydJa+3mqrpq6L9hkhMm3XPyNeffof2JixvQcvXrAAAAy15Vza2qUyYdcyede3aSy1prpy7DId6JxAYAALid1tq8JPOmOP2kJH9VVTsnWSXJWkk+kmTtqlphSG02SnLh0P/CJBsnuaCqVkhyvySXT2q/zeRrpmqfksQGAAB6sJxsHtBae1trbaPW2iaZWPz//dbai5Mck2TXodseSb4xvD58eJ/h/Pdba21o323YNW3TJFskOSnJyUm2GHZZW2n4jMMX9/NIbAAAgHvCW5McUlXvT/LTJAcM7Qck+UJVzU9yRSYKlbTWzqyqw5KcleTmJK9prd2SJFW1V5KjksxOcmBr7czFfbjCBgAAerB8bR6QJGmtHZvk2OH1OZnY0eyOfa5P8tdTXL9vkn0X0X5EkiOWZCzL368DAACwhCQ2AADQg+k/OPM+SWIDAAB0T2IDAAA9WA7X2CxP/DoAAED3JDYAANADic0ovw4AANA9iQ0AAPTArmijJDYAAED3JDYAANADa2xG+XUAAIDuSWwAAKAH1tiMktgAAADdU9gAAADdMxUNAAB6YPOAUX4dAACgexIbAADogc0DRklsAACA7klsAACgAyWxGSWxAQAAuiexAQCADkhsxklsAACA7klsAACgBwKbURIbAACgexIbAADogDU24yQ2AABA9yQ2AADQAYnNOIkNAADQPYkNAAB0QGIzTmIDAAB0T2EDAAB0z1Q0AADogKlo4yQ2AABA9yQ2AADQA4HNKIkNAADQPYkNAAB0wBqbcRIbAACgexIbAADogMRmnMQGAADonsQGAAA6ILEZJ7EBAAC6J7EBAIAOSGzGSWwAAIDuSWwAAKAHAptREhsAAKB7EhsAAOiANTbjJDYAAED3JDYAANABic04iQ0AANA9hQ0AANA9U9EAAKADpqKNk9gAAADdk9gAAEAPBDajJDYAAED3JDYAANABa2zGSWwAAIDuSWwAAKADEptxEhsAAKB7EhsAAOiAxGacxAYAAOiexAYAADogsRknsQEAALonsQEAgB4IbEZJbAAAgO5JbAAAoAPW2IyT2AAAAN1T2AAAAN0zFQ0AADpgKto4iQ0AALBEqmqVqjqpqn5WVWdW1T5D++eq6tyqOm04th7aq6o+WlXzq+r0qnrcpHvtUVW/Ho49JrU/vqp+Plzz0VpMZSexAQCADixnic0NSZ7eWvtjVa2Y5PiqOnI494+tta/cof9OSbYYjicm+WSSJ1bVukneneQJSVqSU6vq8NbagqHPK5KcmOSIJHOSHJkpSGwAAIAl0ib8cXi74nC0kUt2SfL54boTkqxdVRsk2THJ0a21K4Zi5ugkc4Zza7XWTmittSSfT/KcsTEpbAAAoAc1g8d0hlM1u6pOS3JZJoqTE4dT+w7TzfavqpWHtg2TnD/p8guGtrH2CxbRPiWFDQAAcDtVNbeqTpl0zL1jn9baLa21rZNslGSbqtoqyduSPDLJnyVZN8lbZ2rM1tgAAEAHZnKNTWttXpJ50+x7ZVUdk2ROa22/ofmGqvpskjcP7y9MsvGkyzYa2i5Mst0d2o8d2jdaRP8pSWwAAIAlUlUPqKq1h9erJtkhyS+GtTEZdjB7TpIzhksOT7L7sDvatkmuaq1dnOSoJM+sqnWqap0kz0xy1HDu6qradrjX7km+MTYmiQ0AAHRgOdsVbYMkB1XV7EyEJYe11r5ZVd+vqgdkYqXOaUleNfQ/IsnOSeYnuTbJy5KktXZFVb0vyclDv/e21q4YXr86yeeSrJqJ3dCm3BEtUdgAAABLqLV2epLHLqL96VP0b0leM8W5A5McuIj2U5JsNd0xKWwAAKADy1lis9xR2HCfNmtW5X++9JZcdNlVef7rPpVPvvtFedyWD0mlMv93l+UV7/pCrrnuxjzpcZvnX9+8a/5kiwdn97d9Nv/13dMW3uMbH3t1tnnMJvnRT8/J81/3qYXt3z3g9Vlj9VWSJA9cd82ccsZ5ecEbPz3j3xFgaTjv3HPylje9YeH7Cy44P6/e67V5ye5/my9/6Qs59OAvZdas2XnKU56aN7z5LfnWNw/PQQcesLD/r371yxzyn/+Vh26ySf7xja/L+ef/LrNmzc5Tt3taXv/GNy/qIwFGKWy4T9vrRU/LL8+9NGsOBchb9vta/nDN9UmSD77pefn73Z6a/T57dM6/eEHmvvsLef3u29/pHvt//rtZbZWVsufz/+J27c/Y88MLXx+839/lv489fSl+E4CZtcmmm+Wwr02s473llluyw9Oekqc/Y4ecdOIJOfb738t/fu3wrLTSSrn88suTJM969l/lWc/+qyTJr3/1y7z+ta/JIx/1qFx33XXZ/W9fnm2euG1uuvHGvGLPv83xP/xB/uLJT11WXw2WWxKbcXZF4z5rwweunTl/8eh89r9+tLDttqImSVZZecVMTAdNfnfxFTnj1xfl1lvv/EDdY0/6Vf5wzQ1Tfs6aq6+Sp/7Zw/PfxyhsgHunE0/4cTbeeOM8+MEb5j8PPTgv/7u5WWmllZIk66233p36H3nEtzJnp2clSVZdddVs88RtkyQrrrRSHrXllrn0kktnbvDAvcZSK2yq6pFV9daq+uhwvLWqHrW0Pg+W1L/+4/Pzjo98/U7Fyn+85yU577v/nEdssn4+ccgP7vbn/OXTHpNjT/rl7YomgHuTbx/5rczZ+dlJkt+ed15+cuopefFuf52X7/GSnPHzO/+jzlHfPiJzdn7Wndqvvvrq/ODYY/LEbf98qY8ZulQzeHRoqRQ2VfXWJIdk4mc5aTgqycFVtffS+ExYEjs9eatcdsUf8tOzz7/TuVe+54vZ7JnvyC/OvSS7PvPxd/uzXjDn8Tns26fe7fsALI9uuvHG/OCY7+eZO85Jktx8yy256qqr8sWDD8sb3vSW/OObXr8w/U6S00//WVZZZdVsscXDb3efm2++OXv/4xvzohe/NBttvHEAltTSSmz2TPJnrbUPtNa+OBwfSLLNcG6RqmpuVZ1SVacspXFBkuTPt94sz37qn+QX39onn//Ay7Ldnz08B75/94Xnb7215T+POjXP2X7ru/U56629ep7w6E1y5A/PWHxngA4df/xxeeSWj856979/kmT99dfP9s/YIVWVP3nMYzJr1qwsWLBgYf+jjvhWdlpEWvPe97wzD3noJnnJ7n87U0MH7mWWVmFza5IHL6J9g+HcIrXW5rXWntBae8JSGhckSd7174fnYXPemUc+693Zfe/P5tiTf5WX/9Pns9nG91/Y59lPfUx+dd7dm+f93Gc8Nkf+8IzccOPNd3fIAMulI+9QqDxt+2fk5JNOTJKcd965uemmm7LOOuskSW699dYcddSRC9fX3OZjH9k/f/zDH/OWvd8+cwOHDlXVjB09Wlq7or0+yfeq6tdJbpvr85AkD0uy11L6TLhbqiqfee9Ls+bqq6Yq+fmvLsxr//nQJMnjt3xIDv3QK7L2Wqtl56f8Sf7pVc/K43fdN8nEts4P33T9rLHqypn/7fflVft8Od/98dlJkr/e8fHZ77PfWWbfCWBpuvbaa3PCj36Ud777vQvbnvvc5+dd73x7nrfLs7Piiivmfft+YOFfkk495eQ86EEb3G6q2aWXXJJPz/tUNt1ss+y263OTJLu96CV53q5/PbNfBuheTZ73eo/euGpWJqaebTg0XZjk5NbaLdO8vq2y9SIfTgrAIlx/2seTJNfdtHT+XAe4N1p1xUprrYuIYvM3HTljf8D/5t926uI3mWypPcemtXZrkhOW1v0BAABu4wGdAADQgU6XvswYD+gEAAC6J7EBAIAO9Lpb2UyR2AAAAN2T2AAAQAcENuMkNgAAQPckNgAA0AFrbMZJbAAAgO5JbAAAoAMCm3ESGwAAoHsSGwAA6MCsWSKbMRIbAACgewobAACge6aiAQBAB2weME5iAwAAdE9iAwAAHfCAznESGwAAoHsSGwAA6IDAZpzEBgAA6J7EBgAAOmCNzTiJDQAA0D2JDQAAdEBiM05iAwAAdE9iAwAAHRDYjJPYAAAA3ZPYAABAB6yxGSexAQAAuiexAQCADghsxklsAACA7ilsAACA7pmKBgAAHbB5wDiJDQAA0D2JDQAAdEBgM05iAwAAdE9iAwAAHbDGZpzEBgAA6J7EBgAAOiCwGSexAQAAuiexAQCADlhjM05iAwAAdE9iAwAAHRDYjJPYAAAA3ZPYAABAB6yxGSexAQAAuiexAQCADghsxklsAACA7ilsAACA7pmKBgAAHbB5wDiJDQAA0D2JDQAAdEBgM05iAwAAdE9iAwAAHbDGZpzEBgAA6J7EBgAAOiCxGSexAQAAuiexAQCADghsxklsAACAJVJVq1TVSVX1s6o6s6r2Gdo3raoTq2p+VR1aVSsN7SsP7+cP5zeZdK+3De2/rKodJ7XPGdrmV9XeixuTwgYAADpQVTN2TMMNSZ7eWvvTJFsnmVNV2yb5YJL9W2sPS7IgyZ5D/z2TLBja9x/6paq2TLJbkkcnmZPkE1U1u6pmJ/l4kp2SbJnkhUPfKSlsAACAJdIm/HF4u+JwtCRPT/KVof2gJM8ZXu8yvM9wfvuaqKB2SXJIa+2G1tq5SeYn2WY45rfWzmmt3ZjkkKHvlBQ2AADQgaqZO6Y3nppdVacluSzJ0Ul+k+TK1trNQ5cLkmw4vN4wyflJMpy/Ksl6k9vvcM1U7VNS2AAAALdTVXOr6pRJx9w79mmt3dJa2zrJRplIWB454wOdxK5oAADQgZl8jk1rbV6SedPse2VVHZPkz5OsXVUrDKnMRkkuHLpdmGTjJBdU1QpJ7pfk8kntt5l8zVTtiySxAQAAlkhVPaCq1h5er5pkhyRnJzkmya5Dtz2SfGN4ffjwPsP577fW2tC+27Br2qZJtkhyUpKTk2wx7LK2UiY2GDh8bEwSGwAAYEltkOSgYfeyWUkOa619s6rOSnJIVb0/yU+THDD0PyDJF6pqfpIrMlGopLV2ZlUdluSsJDcneU1r7ZYkqaq9khyVZHaSA1trZ44NSGEDAAAdWJ4e0NlaOz3JYxfRfk4m1tvcsf36JH89xb32TbLvItqPSHLEdMdkKhoAANA9iQ0AAHRg1vIU2SyHJDYAAED3JDYAANABgc04iQ0AANA9iQ0AAHRgJh/Q2SOJDQAA0D2JDQAAdGCWwGaUxAYAAOiexAYAADpgjc04iQ0AANA9iQ0AAHRAYDNOYgMAAHRPYgMAAB2oiGzGSGwAAIDuKWwAAIDumYoGAAAd8IDOcRIbAACgexIbAADogAd0jpPYAAAA3ZPYAABABwQ24yQ2AABA9yQ2AADQgVkim1ESGwAAoHsSGwAA6IDAZpzEBgAA6J7EBgAAOuA5NuMkNgAAQPckNgAA0AGBzTiJDQAA0D2JDQAAdMBzbMZJbAAAgO4pbAAAgO6ZigYAAB0wEW2cxAYAAOiexAYAADrgAZ3jJDYAAED3JDYAANCBWQKbURIbAACgexIbAADogDU24yQ2AABA9yQ2AADQAYHNOIkNAADQPYkNAAB0wBqbcRIbAACgexIbAADogOfYjJPYAAAA3ZPYAABAB6yxGSexAQAAuqewAQAAumcqGgAAdMBEtHESGwAAoHsSGwAA6MAsmweMmrKwqap/T9KmOt9ae+1SGREAAMASGktsTpmxUQAAAKMENuOmLGxaawfN5EAAAADuqsWusamqByR5a5Itk6xyW3tr7elLcVwAAMAkHtA5bjq7on0pydlJNk2yT5Lzkpy8FMcEAACwRKZT2KzXWjsgyU2ttR+01l6eRFoDAAAzqGrmjh5NZ7vnm4b/XlxVz0pyUZJ1l96QAAAAlsx0Cpv3V9X9krwpyb8nWSvJG5bqqAAAgNvxHJtxiy1sWmvfHF5eleRpS3c4AAAAS246u6J9Not4UOew1gYAAJgBAptx05mK9s1Jr1dJ8txMrLMBAABYLkxnKtpXJ7+vqoOTHL/URgQAANyJ59iMm05ic0dbJHngPT2QRbn+tI/PxMcA3KusuqL/4wPgvmc6a2z+kNuvsbkkyVuX2ogAAIA7mc4DKO/LpjMVbc2ZGMii/OLia5bVRwN055EbrJ4kWeclX1rGIwHox4IvvnhZD4F7yGILv6r63nTaAACA+4aq2riqjqmqs6rqzKp63dD+nqq6sKpOG46dJ13ztqqaX1W/rKodJ7XPGdrmV9Xek9o3raoTh/ZDq2qlsTFNmdhU1SpJVkty/6paJ8ltk7bXSrLhXfoFAACAu2Q52zzg5iRvaq39pKrWTHJqVR09nNu/tbbf5M5VtWWS3ZI8OsmDk3y3qh4+nP54kh2SXJDk5Ko6vLV2VpIPDvc6pKo+lWTPJJ+cakBjU9FemeT1wwefmv8rbK5O8rHpfmMAAODepbV2cZKLh9d/qKqzMx5+7JLkkNbaDUnOrar5SbYZzs1vrZ2TJFV1SJJdhvs9PcmLhj4HJXlPRgqbKaeitdY+0lrbNMmbW2ubtdY2HY4/ba0pbAAAYAbNqpk7lkRVbZLksUlOHJr2qqrTq+rAYeZXMlH0nD/psguGtqna10tyZWvt5ju0T/37TGOst1bV2pMGvk5VvXoa1wEAAB2qqrlVdcqkY+4U/dZI8tUkr2+tXZ2JRGXzJFtnItH5t5ka83SeY/OK1trCB8q01hZU1SuSfGLpDQsAAJhsSZOUu6O1Ni/JvLE+VbViJoqaL7XWvjZcd+mk859O8s3h7YVJNp50+UZDW6ZovzzJ2lW1wpDaTO6/SNNJbGbXpJVKVTU7yeiOBAAAwL3XUB8ckOTs1tqHJrVvMKnbc5OcMbw+PMluVbVyVW2aZIskJyU5OckWww5oK2Vig4HDW2styTFJdh2u3yPJN8bGNJ3E5ttJDq2q/xjevzLJkdO4DgAAuIcsZ7uiPSnJS5P8vKpOG9renuSFVbV1kpbkvEzUDmmtnVlVhyU5KxM7qr2mtXZLklTVXkmOSjI7yYGttTOH+701ySFV9f4kP81EITWl6RQ2b00yN8mrhvenJ3nQNK4DAADuhVprx+f/dk2e7IiRa/ZNsu8i2o9Y1HXDTmnb3LF9KostbFprt1bViZlYBPSCJPfPxFw6AABghszkGpsejT2g8+FJXjgc/5vk0CRprT1tZoYGAAAwPWOJzS+S/DDJs1tr85Okqt4wI6MCAABuZ/laYrP8GdsV7XmZ2Hv6mKr6dFVtn0XPowMAAFimpkxsWmtfT/L1qlo9yS5JXp/kgVX1yST/1Vr7zgyNEQAA7vNmiWxGLfY5Nq21a1prX26t/WUmHozz00zslAYAALBcmM52zwu11hZk4gmko08hBQAA7lmLTSTu4/w+AABA9xQ2AABA95ZoKhoAALBs2DtgnMQGAADonsQGAAA6YLvncRIbAACgexIbAADogMBmnMQGAADonsQGAAA6MEtiM0piAwAAdE9iAwAAHbAr2jiJDQAA0D2JDQAAdEBgM05iAwAAdE9iAwAAHbAr2jiJDQAA0D2JDQAAdKAishkjsQEAALqnsAEAALpnKhoAAHTA5gHjJDYAAED3JDYAANABic04iQ0AANA9iQ0AAHSgSmQzRmIDAAB0T2IDAAAdsMZmnMQGAADonsQGAAA6YInNOIkNAADQPYkNAAB0YJbIZpTEBgAA6J7EBgAAOmBXtHESGwAAoHsSGwAA6IAlNuMkNgAAQPcUNgAAQPdMRQMAgA7MirloYyQ2AABA9yQ2AADQAZsHjJPYAAAA3ZPYAABABzygc5zEBgAA6J7EBgAAOjDLIptREhsAAKB7EhsAAOiAwGacxAYAAOiexAYAADpgjc04iQ0AANA9iQ0AAHRAYDNOYgMAAHRPYgMAAB2QSIzz+wAAAN1T2AAAAN0zFQ0AADpQdg8YJbEBAAC6J7EBAIAOyGvGSWwAAIDuSWwAAKADs6yxGSWxAQAAuiexAQCADshrxklsAACA7ilsAACgA1Uzdyx+LLVxVR1TVWdV1ZlV9bqhfd2qOrqqfj38d52hvarqo1U1v6pOr6rHTbrXHkP/X1fVHpPaH19VPx+u+Wgt5kE+ChsAAGBJ3ZzkTa21LZNsm+Q1VbVlkr2TfK+1tkWS7w3vk2SnJFsMx9wkn0wmCqEk707yxCTbJHn3bcXQ0OcVk66bMzYghQ0AAHSgqmbsWJzW2sWttZ8Mr/+Q5OwkGybZJclBQ7eDkjxneL1Lks+3CSckWbuqNkiyY5KjW2tXtNYWJDk6yZzh3FqttRNaay3J5yfda5EUNgAAwF1WVZskeWySE5Os31q7eDh1SZL1h9cbJjl/0mUXDG1j7Rcson1KdkUDAIAOzGQiUVVzMzFl7DbzWmvzFtFvjSRfTfL61trVk9Oe1lqrqrbUBztQ2AAAALczFDF3KmQmq6oVM1HUfKm19rWh+dKq2qC1dvEwneyyof3CJBtPunyjoe3CJNvdof3YoX2jRfSfkqloAADQgeVpjc2wQ9kBSc5urX1o0qnDk9y2s9keSb4xqX33YXe0bZNcNUxZOyrJM6tqnWHTgGcmOWo4d3VVbTt81u6T7rVIEhsAAGBJPSnJS5P8vKpOG9renuQDSQ6rqj2T/DbJC4ZzRyTZOcn8JNcmeVmStNauqKr3JTl56Pfe1toVw+tXJ/lcklWTHDkcU1LYAAAAS6S1dnySqaKd7RfRvyV5zRT3OjDJgYtoPyXJVtMdk8IGAAA6MI3nZt6nWWMDAAB0T2IDAAAdmM6i/vsyiQ0AANA9iQ0AAHRAIjHO7wMAAHRPYgMAAB2wxmacxAYAAOiexAYAADogrxknsQEAALonsQEAgA5YYjNOYgMAAHRPYgMAAB2YZZXNKIkNAADQPYkNAAB0wBqbcRIbAACgewobAACge6aiAQBAB8rmAaMkNgAAQPckNgAA0AGbB4yT2AAAAN2T2AAAQAc8oHOcxAYAAOiexAYAADpgjc04iQ0AANA9iQ0AAHRAYjNOYgMAAHRPYgMAAB0ou6KNktgAAADdk9gAAEAHZglsRklsAACA7klsAACgA9bYjJPYAAAA3VPYAAAA3TMVDQAAOuABneMkNgAAQPckNgAA0AGbB4yT2AAAAN2T2AAAQAc8oHOcxAYAAOiexAYAADpgjc04iQ0AANA9iQ0AAHTAc2zGKWy4z/rIB96TU358XO63zrr52Oe+kiT54gEfz4nH/yCzZlXut/a6ed3b9sl6939gjj36iHz1y59LWsuqq62Wv3/j27Ppwx6R3192ST687ztz5YLLk6rs+JfPz1/t+qIkyfHHHJ2DP/epXPDbc7Pfp76QLR756GX4bQHuvpVXnJVvvmOHrLzirKwwq3L4yefnA1/7eb71T8/IGqusmCS5/1or5yfnXJ6XfviHSZJ/eenjs8OfPjjX3XBzXjPvhJz+2wVJkg3XWy0f3fOJ2XDd1dKSvGC/Y3P+/16Tp2y5fvZ54WMzqyrXXH9TXjPvhJx72R+X1VcGOlKttWU9hkWqqvaLi69Z1sPgXuyMn52aVVddLfv/8zsXFjbXXvPHrLb6GkmS//7Kl3P+b8/Jq9/0Tzn7jNOy8UM3yxprrpVTTzg+B3/uP7Lfp76QKy7/fRZc/r/Z/OGPyrXXXpM3vuJFefu+H8pDNtk85593TmrWrHzi396fl/39GxQ2LHWP3GD1JMk6L/nSMh4J92arr7xCrrnh5qwwu3LkO3fI275wak75zeULzx/02r/IEademEP/59w8408fnLk7PDwv2O/YPGHz9SaKnPd8J0ly+Nu3z4cOPzPHnnFJVl95hdzaWq678Zac9P89Oy/58HH51UVX5+Xbb5HHbb5e9pp3wrL6utwHLPjii9Na6yIL+Z9fL5ixv7g/aYt1uvhNJpPYcJ+11Z8+PpdefNHt2m4rapLk+uuvS4ZFeo/aauuF7Y949GPyv7+/NEmy7noPyLrrPaOKQ6sAAA+LSURBVGDi2tVWz0YP3TSX//73ecgmm2fjTTZbyt8AYOZdc8PNSZIVZ8/KCrNnZfLfstZcZYU8ecsHLSxEdn7chjnk+HOTJKf85vKstdpKWf9+q2Tt1VfKCrMqx55xye3umSQtyZqrTqQ/a622Yi5ZcN3S/1LAvYLCBu7gC5/+WI456ptZbY01su+H593p/NHf+noe/8Qn3an90osvyjm//mUeseVWMzFMgGViVlWOed+cbLr+Gjngu7/OqZPSmp0fv3GOO/OS/OH6iUJlg3VWy4VXXLvw/EVXXJsN1l0tD153tVx17U056LVPzkMfsHp+cOYl2efQn+XW1vK6z5yYQ9+0Xa6/6Zb84bqb8sz3HDXj3xGWV7Msshk147uiVdXLZvozYUm89BV75cCvfDtPfcZO+dbXDr3dudN/cnKO/tbXs8crX3e79uuuvTYfeNeb83f/8ObbpT4A9za3tpan/tOR2ep1X8/jNlsvj9rofgvPPf/PH5qv/vi3i73HCrMqf/6IB+RdB/8k27/7qGzywDXyoqdsmiT5+zmPzN/827HZ6nVfz5ePOyfvf/Hjltp3Ae5dlsV2z/tMdaKq5lbVKVV1ykwOCBZlux12zo+O+97C9+f+5lf52L++N+/45/2z1v3WXth+88035QPvenOe+oyd8v+esv2yGCrAjLv62pty/NmXZvvHbJAkWXeNlfO4zdbLd3524cI+Fy+4Nhuuu9rC9w9ed7VcfMW1ueiKa/Pz3y3Ib39/TW65teVbp16Qx2yybtZbc+Vs9ZC1F6ZAXzvxt9lmiwfM7BeD5VjN4NGjpVLYVNXpUxw/T7L+VNe11ua11p7QWnvC0hgXLM5FF/zfvzSeePyx2eghmyRJfn/pxfmXd745b3jH+7Lhxg9d2Ke1ln//4D7Z6KGb5jl/89KZHi7AjFpvzZWz1moT619WWXF2ttvqQfnVRVcnSf5qm41z1GkX5oabbl3Y/8ifXJjd/mIiiXnC5uvl6mtvyqVXXZ+fnHNF7rfaSllvzZWTJE/Zcv388sKrcuU1N2at1VbM5g9aM0nytK0elF9ddNVMfkWgY0trjc36SXZMsuAO7ZXkR0vpM2GJ/Os+e+eM007N1VddmZftumNe+LJX5dQTjs+F5/82VbPywPU3yKvf9I4kySEHzcsfrroyn9r/X5Iks2fPzofmfTln//y0HPOdb+Whm22R1+35N0kmprI9Ydsn58fHfT/zPvrBXHXlgrx379dms4c9Ivvs94ll9n0B7q711141n5i7bWbPqsyaVfn6ib/Ld06b2ITleds+NB/577Nu1//on12UHbZ+cE7d7y9z3Y23ZK9PT2wqcGtredfBP83X9356qiqnnXdFPn/Mb3LLrS2vP+CkHPTaJ+fW1nLlNTfmHz5tRzRgepbKds9VdUCSz7bWjl/EuS+31l40jXvY7hlgCdjuGWDJ9bTd8wm/uXLGtnvedvO1u/hNJlsqiU1rbc+Rc4stagAAAJaE7Z4BAKAD1e2y/pmxLHZFAwAAuEdJbAAAoAOezzlOYgMAAHRPYgMAAB0Q2IyT2AAAAN2T2AAAQA9ENqMkNgAAQPckNgAA0AHPsRknsQEAALonsQEAgA54js04iQ0AANA9iQ0AAHRAYDNOYgMAAHRPYQMAACyRqjqwqi6rqjMmtb2nqi6sqtOGY+dJ595WVfOr6pdVteOk9jlD2/yq2ntS+6ZVdeLQfmhVrbS4MSlsAACgBzWDx+J9LsmcRbTv31rbejiOSJKq2jLJbkkePVzziaqaXVWzk3w8yU5JtkzywqFvknxwuNfDkixIsufiBqSwAQAAlkhr7bgkV0yz+y5JDmmt3dBaOzfJ/CTbDMf81to5rbUbkxySZJeqqiRPT/KV4fqDkjxncR+isAEAgA7UDP7vbtirqk4fpqqtM7RtmOT8SX0uGNqmal8vyZWttZvv0D5KYQMAANxOVc2tqlMmHXOncdknk2yeZOskFyf5t6U6yDuw3TMAAHRgJh/Q2Vqbl2TeEl5z6W2vq+rTSb45vL0wycaTum40tGWK9suTrF1VKwypzeT+U5LYAAAAd1tVbTDp7XOT3LZj2uFJdquqlatq0yRbJDkpyclJthh2QFspExsMHN5aa0mOSbLrcP0eSb6xuM+X2AAAQAeWpwd0VtXBSbZLcv+quiDJu5NsV1VbJ2lJzkvyyiRprZ1ZVYclOSvJzUle01q7ZbjPXkmOSjI7yYGttTOHj3hrkkOq6v1JfprkgMWNSWEDAAAskdbaCxfRPGXx0VrbN8m+i2g/IskRi2g/JxO7pk2bwgYAAHqwPEU2yyFrbAAAgO5JbAAAoAN38/ky93oSGwAAoHsSGwAA6MBMPsemRxIbAACgexIbAADogMBmnMQGAADonsQGAAB6ILIZJbEBAAC6p7ABAAC6ZyoaAAB0wAM6x0lsAACA7klsAACgAx7QOU5iAwAAdE9iAwAAHRDYjJPYAAAA3ZPYAABAD0Q2oyQ2AABA9yQ2AADQAc+xGSexAQAAuiexAQCADniOzTiJDQAA0D2JDQAAdEBgM05iAwAAdE9iAwAAPRDZjJLYAAAA3VPYAAAA3TMVDQAAOuABneMkNgAAQPckNgAA0AEP6BwnsQEAALonsQEAgA4IbMZJbAAAgO5JbAAAoAcim1ESGwAAoHsSGwAA6IDn2IyT2AAAAN2T2AAAQAc8x2acxAYAAOiexAYAADogsBknsQEAALonsQEAgB6IbEZJbAAAgO4pbAAAgO6ZigYAAB3wgM5xEhsAAKB7EhsAAOiAB3SOk9gAAADdk9gAAEAHBDbjJDYAAED3JDYAANABa2zGSWwAAIDuSWwAAKALIpsxEhsAAKB7EhsAAOiANTbjJDYAAED3JDYAANABgc04iQ0AANA9iQ0AAHTAGptxEhsAAKB7ChsAAKB7pqIBAEAHyvYBoyQ2AABA9yQ2AADQA4HNKIkNAADQPYkNAAB0QGAzTmIDAAB0T2EDAAAdqJq5Y/FjqQOr6rKqOmNS27pVdXRV/Xr47zpDe1XVR6tqflWdXlWPm3TNHkP/X1fVHpPaH19VPx+u+WjV4kelsAEAAJbU55LMuUPb3km+11rbIsn3hvdJslOSLYZjbpJPJhOFUJJ3J3likm2SvPu2Ymjo84pJ193xs+5EYQMAAB2oGfzf4rTWjktyxR2ad0ly0PD6oCTPmdT++TbhhCRrV9UGSXZMcnRr7YrW2oIkRyeZM5xbq7V2QmutJfn8pHtNSWEDAADcE9ZvrV08vL4kyfrD6w2TnD+p3wVD21j7BYtoH6WwAQCAHtTMHVU1t6pOmXTMXZKhDklLu1vfdwnZ7hkAALid1tq8JPOW8LJLq2qD1trFw3Syy4b2C5NsPKnfRkPbhUm2u0P7sUP7RovoP0piAwAAHZjBwOauOjzJbTub7ZHkG5Padx92R9s2yVXDlLWjkjyzqtYZNg14ZpKjhnNXV9W2w25ou0+615QkNgAAwBKpqoMzkbbcv6ouyMTuZh9IclhV7Znkt0leMHQ/IsnOSeYnuTbJy5KktXZFVb0vyclDv/e21m7bkODVmdh5bdUkRw7HKIUNAAB0YDrPl5kprbUXTnFq+0X0bUleM8V9Dkxy4CLaT0my1ZKMyVQ0AACgewobAACge6aiAQBAB6bz4Mz7MokNAADQPYkNAAB0YHnaPGB5JLEBAAC6p7ABAAC6p7ABAAC6Z40NAAB0wBqbcRIbAACgexIbAADogOfYjJPYAAAA3ZPYAABAB6yxGSexAQAAuiexAQCADghsxklsAACA7klsAACgByKbURIbAACgewobAACge6aiAQBABzygc5zEBgAA6J7EBgAAOuABneMkNgAAQPckNgAA0AGBzTiJDQAA0D2JDQAA9EBkM0piAwAAdE9iAwAAHfAcm3ESGwAAoHsSGwAA6IDn2Iyr1tqyHsMiVdXyOTAAAO5VWmtdlAzX35wZ+/vxKiv0N+9tuS1sYHlWVXNba/OW9TgAeuHPTWBps8YG7pq5y3oAAJ3x5yawVClsAACA7ilsAACA7ils4K4xTxxgyfhzE1iqbB4AAAB0T2IDAAB0T2EDS6Cq5lTVL6tqflXtvazHA7C8q6oDq+qyqjpjWY8FuHdT2MA0VdXsJB9PslOSLZO8sKq2XLajAljufS7JnGU9CODeT2ED07dNkvmttXNaazcmOSTJLst4TADLtdbacUmuWNbjAO79FDYwfRsmOX/S+wuGNgAAljGFDQAA0D2FDUzfhUk2nvR+o6ENAIBlTGED03dyki2qatOqWinJbkkOX8ZjAgAgChuYttbazUn2SnJUkrOTHNZaO3PZjgpg+VZVByf5cZJHVNUFVbXnsh4TcO9UrbVlPQYAAIC7RWIDAAB0T2EDAAB0T2EDAAB0T2EDAAB0T2EDAAB0T2EDsAxU1S1VdVpVnVFV/1lVq92Ne32uqnYdXn+mqrYc6btdVf2/u/AZ51XV/e/qGAFgaVPYACwb17XWtm6tbZXkxiSvmnyyqla4Kzdtrf1da+2skS7bJVniwgYAlncKG4Bl74dJHjakKT+sqsOTnFVVs6vqX6vq5Ko6vapemSQ14WNV9cuq+m6SB952o6o6tqqeMLyeU1U/qaqfVdX3qmqTTBRQbxjSoidX1QOq6qvDZ5xcVU8arl2vqr5TVWdW1WeS1Mz+JACwZO7SvwgCcM8Ykpmdknx7aHpckq1aa+dW1dwkV7XW/qyqVk7yP1X1nSSPTfKIJFsmWT/JWUkOvMN9H5Dk00meMtxr3dbaFVX1qSR/bK3tN/T7cpL9W2vHV9VDkhyV5FFJ3p3k+Nbae6vqWUk8LR6A5ZrCBmDZWLWqThte/zDJAZmYInZSa+3cof2ZSR5z2/qZJPdLskWSpyQ5uLV2S5KLqur7i7j/tkmOu+1erbUrphjHM5JsWbUwkFmrqtYYPuN5w7XfqqoFd/F7AsCMUNgALBvXtda2ntwwFBfXTG5K8g+ttaPu0G/ne3Acs5Js21q7fhFjAYBuWGMDsPw6KsnfV9WKSVJVD6+q1ZMcl+RvhjU4GyR52iKuPSHJU6pq0+HadYf2PyRZc1K/7yT5h9veVNVtxdZxSV40tO2UZJ177FsBwFKgsAFYfn0mE+tnflJVZyT5j0wk7f+V5NfDuc8n+fEdL2yt/T7J3CRfq6qfJTl0OPXfSZ572+YBSV6b5AnD5gRn5f92Z9snE4XRmZmYkva7pfQdAeAeUa21ZT0GAACAu0ViAwAAdE9hAwAAdE9hAwAAdE9hAwAAdE9hAwAAdE9hAwAAdE9hAwAAdE9hAwAAdO//BwdF+xF6MdqQAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"code","source":[],"metadata":{"id":"OKd8pFz2y0jq"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"I4IRU_rs0aUY"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"CczXoQRs0hrk"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["# **Testing models on new dataset.** "],"metadata":{"id":"YS7gIMS-9jJD"}},{"cell_type":"code","source":["headline_data, headline_label "],"metadata":{"id":"qMU4wupHCp-F"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["headline_label[\"is_sarcastic\"].head()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"TZdtuS07Hge-","executionInfo":{"status":"ok","timestamp":1670169433039,"user_tz":-540,"elapsed":14,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"7472e793-e9a9-45c0-e0a0-801b4c3e7308"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["0 0\n","1 0\n","2 1\n","3 1\n","4 0\n","Name: is_sarcastic, dtype: int64"]},"metadata":{},"execution_count":10}]},{"cell_type":"code","source":["x_headline = headline_data[\"headline\"].to_numpy()\n","y_headline = headline_label[\"is_sarcastic\"].to_numpy()"],"metadata":{"id":"qv2mkm99HS0B"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# import tensorflow as tf\n","# from transformers import BertTokenizer, TFBertModel\n","# from transformers import DistilBertTokenizer, TFDistilBertModel\n","# from transformers import RobertaTokenizer, TFRobertaModel\n","\n","# tokenizer_bert = BertTokenizer.from_pretrained('bert-base-uncased')\n","# tokenizer_roberta = RobertaTokenizer.from_pretrained('roberta-base')\n","# tokenizer_distilbert = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')\n","\n","max_len = 100\n","## bert encode\n","test_bert = bert_encode(x_headline, tokenizer_bert, max_len=max_len)\n","# X_val_bert = bert_encode(val_dd, tokenizer_bert, max_len=max_len)\n","## Roberta encode\n","test_roberta = roberta_encode(x_headline, tokenizer_roberta, max_len=max_len)\n","# X_val_roberta = roberta_encode(val_dd, tokenizer_roberta, max_len=max_len)\n","## Distilbert encode\n","test_distil = distilbert_encode(x_headline, tokenizer_distilbert, max_len=max_len)\n","# X_val_distil = distilbert_encode(val_dd, tokenizer_distilbert, max_len=max_len)"],"metadata":{"id":"9Pm8CrFKMYU0"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# build model\n","max_len = 100\n","model_bert = build_bert_model(bert_base, max_len=max_len)\n","model_roberta = build_roberta_model(roberta_base, max_len=max_len)\n","model_distilbert = build_distilbert_model(distilbert_base, max_len=max_len)\n","\n","# model.summary()"],"metadata":{"id":"kdQK4_Y5NSJX"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# Loading saved models\n","\n","%%time\n","model_bert.load_weights('/content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/BERT/model_e10/model.h5')\n","model_roberta.load_weights('/content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/roberta/model_e10/model.h5')\n","model_distilbert.load_weights('/content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/distilbert/model_e10_updated/model.h5')"],"metadata":{"id":"29AfffOLNayM","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1670169508395,"user_tz":-540,"elapsed":24509,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"eff14968-c28a-4934-829e-b6c338ee866a"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["CPU times: user 931 ms, sys: 745 ms, total: 1.68 s\n","Wall time: 27 s\n"]}]},{"cell_type":"code","source":["%%time\n","models = [model_bert, model_roberta, model_distilbert]\n","x_vals = [test_bert, test_roberta, test_distil] \n","\n","preds = [model.predict(x_vals[i]) for i, model in enumerate(models)]\n","preds = np.array(preds)\n","weights = [0.5, 0.4, 0.1]\n","\n","weighted_preds = np.tensordot(preds, weights, axes = ((0), (0)))\n","weighted_ensemble_prediction = np.argmax(weighted_preds, axis = 1)\n","\n","weighted_accuracy = sklearn.metrics.accuracy_score(y_headline, weighted_ensemble_prediction)\n","print(\"Weighted Validation accuracy is: \", weighted_accuracy)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"IHDCP-hE1dYn","executionInfo":{"status":"ok","timestamp":1670170436954,"user_tz":-540,"elapsed":928570,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"e7fd33c3-9d08-48dd-e089-055318b0d342"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["1729/1729 [==============================] - 370s 212ms/step\n","1729/1729 [==============================] - 355s 204ms/step\n","1729/1729 [==============================] - 202s 116ms/step\n","Weighted Validation accuracy is: 0.4958971949103528\n","CPU times: user 11min 43s, sys: 4min 13s, total: 15min 57s\n","Wall time: 15min 28s\n"]}]},{"cell_type":"code","source":[],"metadata":{"id":"dL3bl4u52kSJ"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["# **Prediction on 1 sentence**"],"metadata":{"id":"QdkZj__WIjIH"}},{"cell_type":"code","source":["mispell_dict = {\"ain't\": \"is not\", \"cannot\": \"can not\", \"aren't\": \"are not\", \"can't\": \"can not\", \"'cause\": \"because\", \"could've\": \"could have\", \"couldn't\": \"could not\", \"didn't\": \"did not\",\n"," \"doesn't\": \"does not\",\n"," \"don't\": \"do not\", \"hadn't\": \"had not\", \"hasn't\": \"has not\", \"haven't\": \"have not\", \"he'd\": \"he would\", \"he'll\": \"he will\", \"he's\": \"he is\", \"how'd\": \"how did\",\n"," \"how'd'y\": \"how do you\", \"how'll\": \"how will\", \"how's\": \"how is\", \"I'd\": \"I would\", \"I'd've\": \"I would have\", \"I'll\": \"I will\", \"I'll've\": \"I will have\", \"I'm\": \"I am\",\n"," \"I've\": \"I have\", \"i'd\": \"i would\", \"i'd've\": \"i would have\", \"i'll\": \"i will\", \"i'll've\": \"i will have\", \"i'm\": \"i am\", \"i've\": \"i have\", \"isn't\": \"is not\", \"it'd\": \"it would\",\n"," \"it'd've\": \"it would have\", \"it'll\": \"it will\", \"it'll've\": \"it will have\", \"it's\": \"it is\", \"let's\": \"let us\", \"ma'am\": \"madam\", \"mayn't\": \"may not\", \"might've\": \"might have\",\n"," \"mightn't\": \"might not\", \"mightn't've\": \"might not have\", \"must've\": \"must have\", \"mustn't\": \"must not\", \"mustn't've\": \"must not have\", \"needn't\": \"need not\",\n"," \"needn't've\": \"need not have\", \"o'clock\": \"of the clock\", \"oughtn't\": \"ought not\", \"oughtn't've\": \"ought not have\", \"shan't\": \"shall not\", \"sha'n't\": \"shall not\",\n"," \"shan't've\": \"shall not have\", \"she'd\": \"she would\", \"she'd've\": \"she would have\", \"she'll\": \"she will\", \"she'll've\": \"she will have\", \"she's\": \"she is\",\n"," \"should've\": \"should have\", \"shouldn't\": \"should not\", \"shouldn't've\": \"should not have\", \"so've\": \"so have\", \"so's\": \"so as\", \"this's\": \"this is\", \"that'd\": \"that would\",\n"," \"that'd've\": \"that would have\", \"that's\": \"that is\", \"there'd\": \"there would\", \"there'd've\": \"there would have\", \"there's\": \"there is\", \"here's\": \"here is\", \"they'd\": \"they would\",\n"," \"they'd've\": \"they would have\", \"they'll\": \"they will\", \"they'll've\": \"they will have\", \"they're\": \"they are\", \"they've\": \"they have\", \"to've\": \"to have\", \"wasn't\": \"was not\",\n"," \"we'd\": \"we would\", \"we'd've\": \"we would have\", \"we'll\": \"we will\", \"we'll've\": \"we will have\", \"we're\": \"we are\", \"we've\": \"we have\", \"weren't\": \"were not\",\n"," \"what'll\": \"what will\", \"what'll've\": \"what will have\", \"what're\": \"what are\", \"what's\": \"what is\", \"what've\": \"what have\", \"when's\": \"when is\", \"when've\": \"when have\",\n"," \"where'd\": \"where did\", \"where's\": \"where is\", \"where've\": \"where have\", \"who'll\": \"who will\", \"who'll've\": \"who will have\", \"who's\": \"who is\", \"who've\": \"who have\",\n"," \"why's\": \"why is\", \"why've\": \"why have\", \"will've\": \"will have\", \"won't\": \"will not\", \"wont\": \"will not\", \"won't've\": \"will not have\", \"would've\": \"would have\",\n"," \"wouldn't\": \"would not\",\n"," \"wouldn't've\": \"would not have\", \"y'all\": \"you all\", \"y'all'd\": \"you all would\", \"y'all'd've\": \"you all would have\", \"y'all're\": \"you all are\", \"y'all've\": \"you all have\",\n"," \"you'd\": \"you would\", \"you'd've\": \"you would have\", \"you'll\": \"you will\", \"you'll've\": \"you will have\", \"you're\": \"you are\", \"you've\": \"you have\", 'colour': 'color',\n"," 'centre': 'center', 'favourite': 'favorite', 'travelling': 'traveling', 'counselling': 'counseling', 'theatre': 'theater', 'cancelled': 'canceled', 'labour': 'labor',\n"," 'organisation': 'organization', 'wwii': 'world war 2', 'citicise': 'criticize', 'youtu ': 'youtube ', 'Qoura': 'Quora', 'sallary': 'salary', 'Whta': 'What',\n"," 'narcisist': 'narcissist', 'howdo': 'how do', 'whatare': 'what are', 'howcan': 'how can', 'howmuch': 'how much', 'howmany': 'how many', 'whydo': 'why do', 'doI': 'do I',\n"," 'theBest': 'the best', 'howdoes': 'how does', 'Etherium': 'Ethereum',\n"," 'narcissit': 'narcissist', 'bigdata': 'big data', '2k17': '2017', '2k18': '2018', 'qouta': 'quota', 'exboyfriend': 'ex boyfriend', 'airhostess': 'air hostess', \"whst\": 'what',\n"," 'watsapp': 'whatsapp', 'demonitisation': 'demonetization', 'demonitization': 'demonetization', 'demonetisation': 'demonetization'}\n"," \n","mispell_dict = {k.lower(): v.lower() for k, v in mispell_dict.items()}\n","\n","def preprocessing_new_text(s):\n"," # making our string lowercase & removing extra spaces\n"," s = str(s).lower().strip()\n"," \n"," # remove contractions.\n"," s = \" \".join([mispell_dict[word] if word in mispell_dict.keys() else word for word in s.split()])\n"," \n"," # removing \\n\n"," s = re.sub('\\n', '', s)\n"," \n"," # put spaces before & after punctuations to make words seprate. Like \"king?\" to \"king\", \"?\".\n"," s = re.sub(r\"([?!,+=—&%\\'\\\";:¿।।।|\\(\\){}\\[\\]//])\", r\" \\1 \", s)\n"," \n"," # Remove more than 2 continues spaces with 1 space.\n"," s = re.sub('[ ]{2,}', ' ', s).strip()\n"," \n"," return s"],"metadata":{"id":"oAZ_LdFTM0mf"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["sentence = \"Isn't it great that, your girlfriend dumped you?\"\n","sentence = preprocessing_new_text(sentence)\n","print(sentence)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"3UN8VL9-Igwz","executionInfo":{"status":"ok","timestamp":1670125996768,"user_tz":-540,"elapsed":435,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"8b2c6242-3c25-4e1b-8478-b14f79dc4c56"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["is not it great that , your girlfriend dumped you ?\n"]}]},{"cell_type":"code","source":["max_len = 100\n","test2_bert = bert_encode(sentence, tokenizer_bert, max_len=max_len)\n","test2_roberta = roberta_encode(sentence, tokenizer_roberta, max_len=max_len)\n","test2_distil = distilbert_encode(sentence, tokenizer_distilbert, max_len=max_len)"],"metadata":{"id":"CdZW7ExINQkq"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["test2_distil[0].shape"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"EWMYP-wZQUY5","executionInfo":{"status":"ok","timestamp":1670126173083,"user_tz":-540,"elapsed":424,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"8ff5ce84-b772-4954-fb31-0868ce0c7784"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["(100,)"]},"metadata":{},"execution_count":82}]},{"cell_type":"code","source":["%%time\n","models = [model_bert, model_roberta, model_distilbert]\n","x_vals = [test2_bert, test2_roberta, test2_distil] \n","\n","preds = [model.predict(x_vals[i]) for i, model in enumerate(models)]\n","preds = np.array(preds)\n","weights = [0.5, 0.4, 0.1]\n","\n","weighted_preds = np.tensordot(preds, weights, axes = ((0), (0)))\n","weighted_ensemble_prediction = np.argmax(weighted_preds, axis = 1)\n","\n","# weighted_accuracy = sklearn.metrics.accuracy_score(y_headline, weighted_ensemble_prediction)\n","# print(\"Weighted Validation accuracy is: \", weighted_accuracy)\n"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Rd8nEAT5Igzh","executionInfo":{"status":"ok","timestamp":1670126004229,"user_tz":-540,"elapsed":1458,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"34834f90-a6b9-49a1-f275-895c7dceaa27"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["2/2 [==============================] - 0s 155ms/step\n","2/2 [==============================] - 0s 146ms/step\n","2/2 [==============================] - 0s 88ms/step\n","CPU times: user 513 ms, sys: 101 ms, total: 615 ms\n","Wall time: 1.16 s\n"]}]},{"cell_type":"code","source":["weighted_ensemble_prediction.shape"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"nGzT9eTYIg3B","executionInfo":{"status":"ok","timestamp":1670126100293,"user_tz":-540,"elapsed":567,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"}},"outputId":"1925bbc0-91b1-4245-aeb2-df32101c97bb"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["(51,)"]},"metadata":{},"execution_count":78}]},{"cell_type":"code","source":["sentence = \"sun rises from the east\"\n","sentence = preprocessing_text(sentence)\n","print(sentence)\n","\n","sentence = tokenizer.texts_to_sequences([sentence])\n","sentence = pad_sequences(sentence, maxlen = MAX_LEN)\n","sentence"],"metadata":{"id":"8MYM5avmHrY8"},"execution_count":null,"outputs":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"d5gklw0Gk3Vq"},"outputs":[],"source":["print(classification_report(y_test, pred, target_names = ['Not Sarcastic','Sarcastic']))"]},{"cell_type":"code","source":["plt.figure(figsize = (10,10))\n","sns.heatmap(cm,cmap= \"Blues\", linecolor = 'black' , linewidth = 1 , annot = True, fmt='')\n","plt.xlabel(\"Predicted\")\n","plt.ylabel(\"Actual\")"],"metadata":{"id":"FMIRlnRVzn_B"},"execution_count":null,"outputs":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"0m9sG1eba4YA"},"outputs":[],"source":["sentence = \"sun rises from the east\"\n","sentence = preprocessing_text(sentence)\n","print(sentence)\n","\n","sentence = tokenizer.texts_to_sequences([sentence])\n","sentence = pad_sequences(sentence, maxlen = MAX_LEN)\n","sentence"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"4w3r6Ru2a4bK"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZTBbt5i5yab8"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"X8a4b5WhzgAW"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"2SZ-Gw-wyQyV"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"0R-5V4QhjnEx"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":328},"executionInfo":{"elapsed":11195,"status":"error","timestamp":1668500364772,"user":{"displayName":"Furqan Ali","userId":"08783436873128206665"},"user_tz":-540},"id":"-Ir185RFa4jG","outputId":"d7b2395a-7623-4a0e-926b-0a9a7d365bc9"},"outputs":[{"ename":"TypeError","evalue":"ignored","output_type":"error","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)","\u001b[0;32m<ipython-input-21-6f7daa9f9863>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mpath\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"/content/drive/MyDrive/Colab Notebooks/Thesis and paper_work/distilbert/weights/\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkeras\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;32m/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# pylint: disable=broad-except\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0mfiltered_tb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_process_traceback_frames\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__traceback__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 67\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwith_traceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfiltered_tb\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 68\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0mfiltered_tb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m/usr/local/lib/python3.7/dist-packages/keras/saving/saved_model/load.py\u001b[0m in \u001b[0;36mcommon_spec\u001b[0;34m(x, y)\u001b[0m\n\u001b[1;32m 1149\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1150\u001b[0m \u001b[0;31m# Please file a bug if you are being hindered by this error.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1151\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'No common supertype of {x} and {y}.'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1152\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1153\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mTypeError\u001b[0m: No common supertype of TensorSpec(shape=(None, None), dtype=tf.int64, name=None) and TensorSpec(shape=(None, 100), dtype=tf.int32, name='input_ids/attention_mask')."]}],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"_KUOt2yo6FVs"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"q_3GYKOK6FYS"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KvRaymJu6Fay"},"outputs":[],"source":["from sklearn.metrics import confusion_matrix\n","import seaborn as sns\n","def plot_cm(y_true, y_pred, figsize=(15, 15)):\n"," cm = confusion_matrix(y_true, y_pred, labels=np.unique(y_true))\n"," cm_sum = np.sum(cm, axis=1, keepdims=True)\n"," cm_perc = cm / cm_sum.astype(float) * 100\n"," annot = np.empty_like(cm).astype(str)\n"," nrows, ncols = cm.shape\n"," for i in range(nrows):\n"," for j in range(ncols):\n"," c = cm[i, j]\n"," p = cm_perc[i, j]\n"," if i == j:\n"," s = cm_sum[i]\n"," annot[i, j] = '%.1f%%\\n%d/%d' % (p, c, s)\n"," elif c == 0:\n"," annot[i, j] = ''\n"," else:\n"," annot[i, j] = '%.1f%%\\n%d' % (p, c)\n"," cm = pd.DataFrame(cm, index=np.unique(y_true), columns=np.unique(y_true))\n"," cm.index.name = 'Actual'\n"," cm.columns.name = 'Predicted'\n"," fig, ax = plt.subplots(figsize=figsize)\n"," sns.heatmap(cm, cmap= \"YlGnBu\", annot=annot, fmt='', ax=ax)\n","df_eval = pd.DataFrame({'y_true': y_valid, 'y_preds': y_preds})\n","df_eval['y_true'] = (df_eval['y_true'].apply(label_int2str))\n","df_eval['y_preds'] = (df_eval['y_preds'].apply(label_int2str))\n","plot_cm(df_eval['y_true'], df_eval['y_preds'])"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nNw1S0Jm6Fc9"},"outputs":[],"source":["# For word cloud\n","\n","from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator\n","\n","# Wordcloud \n","# Create stopword list:\n","stopwords = set(STOPWORDS)\n","stopwords.update([\"one\", \"first\", \"will\", \"want\", \"give\"])\n","\n","\n","texts = \" \".join(text for text in df.headline)\n","print (\"There are {} words in the combination of headlines.\".format(len(texts)))\n","# Create and generate a word cloud image:\n","wordcloud = WordCloud(max_font_size=50, max_words=100,\n"," stopwords=stopwords,\n"," background_color=\"white\").generate(texts)\n","\n","# Display the generated image:\n","plt.figure(figsize = (10, 8))\n","plt.imshow(wordcloud, interpolation='bilinear')\n","plt.axis(\"off\")\n","plt.show()\n","\n","# Save the image in the img folder:\n","wordcloud.to_file(\"first_review.png\")"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"fTSzj1F06FfP"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lQSiPFAd6FhN"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"URohonso6FjJ"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lmXecIhs6Fm9"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7EUOOSRn6Fo8"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"p6Gq50fr6Fsb"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"e8WzNWhjb011"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OWkoZSuAb05D"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6R4oWfbtb07q"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"4UtIQhMRb0_I"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"V96zQzWrb1Ep"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"WoKXCCqOb1Ik"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ko6_zmyTb1L7"},"outputs":[],"source":[]}],"metadata":{"accelerator":"GPU","colab":{"machine_shape":"hm","provenance":[],"mount_file_id":"1xvFmRnjbpgwtQapOrseH4g0wpHNqpO9H","authorship_tag":"ABX9TyNKhbbBNXcRWOeqt1F49YCt"},"gpuClass":"premium","kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"name":"python"},"widgets":{"application/vnd.jupyter.widget-state+json":{"66f516da9843419bba73a488590797e7":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_0eeee9b8cac34bfe8b12cf5e786dc5be","IPY_MODEL_3fd403d505d74836a9bc4a736e15d611","IPY_MODEL_ad939bde2ccd4554950a7ea48f70d2fa"],"layout":"IPY_MODEL_62cd2ee3e1304199bdfd2767ca4af5c4"}},"0eeee9b8cac34bfe8b12cf5e786dc5be":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_4caab5a4eb4841b1b5ab5577ee7b47c4","placeholder":"","style":"IPY_MODEL_cd79448732e2416ba86487e2e7e9094f","value":"Downloading: 100%"}},"3fd403d505d74836a9bc4a736e15d611":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_3dbc38f422b74201b8bf7d1c20801442","max":231508,"min":0,"orientation":"horizontal","style":"IPY_MODEL_9c47d3ec0b304b05a52fe6d388b9ca0a","value":231508}},"ad939bde2ccd4554950a7ea48f70d2fa":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_7535023e735d4b5981cf83e230447ae3","placeholder":"","style":"IPY_MODEL_47fea0703de84bee96c9c83bfa5117d3","value":" 232k/232k [00:00<00:00, 283kB/s]"}},"62cd2ee3e1304199bdfd2767ca4af5c4":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"4caab5a4eb4841b1b5ab5577ee7b47c4":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"cd79448732e2416ba86487e2e7e9094f":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"3dbc38f422b74201b8bf7d1c20801442":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"9c47d3ec0b304b05a52fe6d388b9ca0a":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"7535023e735d4b5981cf83e230447ae3":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"47fea0703de84bee96c9c83bfa5117d3":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"62bfab077f034d75b4c2946eee044d4d":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_51845aaddc1f43f8aa5dc2aab626ef8d","IPY_MODEL_dfa4063f14d54c9bb9c569d066ed18ba","IPY_MODEL_3b16c940d981401b865f84ac6cc1ac90"],"layout":"IPY_MODEL_892ed9c0e0e04be29fa6ff856b21c330"}},"51845aaddc1f43f8aa5dc2aab626ef8d":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_11830585b17348ab8a0603053b5b0618","placeholder":"","style":"IPY_MODEL_a64cef0cddc34aceafd41189a4c3f494","value":"Downloading: 100%"}},"dfa4063f14d54c9bb9c569d066ed18ba":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_4efb44693b7b4a6abd9e82a4ea229383","max":28,"min":0,"orientation":"horizontal","style":"IPY_MODEL_3ea58173ff1e473da8fd1384528e1ebf","value":28}},"3b16c940d981401b865f84ac6cc1ac90":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_26361bca567c466796e66f99b7ef8b47","placeholder":"","style":"IPY_MODEL_23a80c57060a496fad9f64d59e977174","value":" 28.0/28.0 [00:00<00:00, 1.11kB/s]"}},"892ed9c0e0e04be29fa6ff856b21c330":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"11830585b17348ab8a0603053b5b0618":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"a64cef0cddc34aceafd41189a4c3f494":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"4efb44693b7b4a6abd9e82a4ea229383":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"3ea58173ff1e473da8fd1384528e1ebf":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"26361bca567c466796e66f99b7ef8b47":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"23a80c57060a496fad9f64d59e977174":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"c4207607b8e148af8ee97d8e1db7286e":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_53385de35c144ae3afe8ecb3ef47eda7","IPY_MODEL_5aa4034c4254451c8ceb12217aa935c8","IPY_MODEL_b8be0da12a2d4ba581547c54af120c5a"],"layout":"IPY_MODEL_29b6c7fb223c464f95d2b04996460757"}},"53385de35c144ae3afe8ecb3ef47eda7":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_d710bcb43c4f441b8c0907992a1a937d","placeholder":"","style":"IPY_MODEL_a0e6abc6b8af4a53bb818d45fd5cf3fe","value":"Downloading: 100%"}},"5aa4034c4254451c8ceb12217aa935c8":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_92c1232adb424d7da27d400ed40567c4","max":570,"min":0,"orientation":"horizontal","style":"IPY_MODEL_4aa729d46e3c4b0daa51ae5f5a9f2dc7","value":570}},"b8be0da12a2d4ba581547c54af120c5a":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_2df72da61d3947bbab7a5beb7e285d4d","placeholder":"","style":"IPY_MODEL_c92029b996ea43fbbce22a31eedac533","value":" 570/570 [00:00<00:00, 23.4kB/s]"}},"29b6c7fb223c464f95d2b04996460757":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"d710bcb43c4f441b8c0907992a1a937d":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"a0e6abc6b8af4a53bb818d45fd5cf3fe":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"92c1232adb424d7da27d400ed40567c4":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"4aa729d46e3c4b0daa51ae5f5a9f2dc7":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"2df72da61d3947bbab7a5beb7e285d4d":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c92029b996ea43fbbce22a31eedac533":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"9bf593b74fd84e1f9d2a93ca4723b7f4":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_f0695cd7eb47484da37af8ed4e20463a","IPY_MODEL_33cd32b8540d4ca399ef3fa0f165d10d","IPY_MODEL_ae9a0c12300c43dc8533adcce5b54e0b"],"layout":"IPY_MODEL_54381be196724cf78d7274fca4ac494e"}},"f0695cd7eb47484da37af8ed4e20463a":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_e2701a7411ad4b359081dc3d88af96bc","placeholder":"","style":"IPY_MODEL_1e1b8481154b41689da0edc6cba00b57","value":"Downloading: 100%"}},"33cd32b8540d4ca399ef3fa0f165d10d":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_1d6493dc10ba4671975112cc9a7e56b0","max":898823,"min":0,"orientation":"horizontal","style":"IPY_MODEL_edd115f7bf7148b096e16269f8e954ae","value":898823}},"ae9a0c12300c43dc8533adcce5b54e0b":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_a8a56da44e96499eb0bee15e53f2192c","placeholder":"","style":"IPY_MODEL_60048e0ade734f5a9347a46b3defbf34","value":" 899k/899k [00:01<00:00, 979kB/s]"}},"54381be196724cf78d7274fca4ac494e":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e2701a7411ad4b359081dc3d88af96bc":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"1e1b8481154b41689da0edc6cba00b57":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"1d6493dc10ba4671975112cc9a7e56b0":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"edd115f7bf7148b096e16269f8e954ae":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"a8a56da44e96499eb0bee15e53f2192c":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"60048e0ade734f5a9347a46b3defbf34":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"60c8047b61d24a56afd820056cbdf3b4":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_b2359319833d4df5b2c877dd5381040f","IPY_MODEL_97076d5131ba4b209d641522212ee5ef","IPY_MODEL_15b18682162f48f2a21f909ceea1d870"],"layout":"IPY_MODEL_905126f237e54b52b187302cac3c00ec"}},"b2359319833d4df5b2c877dd5381040f":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_29fff80216514cbf98540ad57d4731e8","placeholder":"","style":"IPY_MODEL_d47d23cafc774d289036fc6438289e90","value":"Downloading: 100%"}},"97076d5131ba4b209d641522212ee5ef":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_0c25af416ff54babb4ad182daf981479","max":456318,"min":0,"orientation":"horizontal","style":"IPY_MODEL_e445b309610343ffad95b4868e1a64f6","value":456318}},"15b18682162f48f2a21f909ceea1d870":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_174b538f457a4c5f91b8f43040331672","placeholder":"","style":"IPY_MODEL_248e6154420142ed89290df90dcf35f8","value":" 456k/456k [00:01<00:00, 542kB/s]"}},"905126f237e54b52b187302cac3c00ec":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"29fff80216514cbf98540ad57d4731e8":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"d47d23cafc774d289036fc6438289e90":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"0c25af416ff54babb4ad182daf981479":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e445b309610343ffad95b4868e1a64f6":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"174b538f457a4c5f91b8f43040331672":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"248e6154420142ed89290df90dcf35f8":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"eccfad9a573946b4ab814a534ea59e0d":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_c00baf90b75e4c0aaea15c2d7a2dd152","IPY_MODEL_0f74c1cdc9ee43fab5f478f19a3cbf08","IPY_MODEL_d780d8d2d08f44f9a59bbf239234928c"],"layout":"IPY_MODEL_6e35bab8e3914b8fa8a5947b00c26418"}},"c00baf90b75e4c0aaea15c2d7a2dd152":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_ccf44f04b1ab497a9f4c48d0a1f054e9","placeholder":"","style":"IPY_MODEL_52af8d2b6d7e4f27847717d3884aac93","value":"Downloading: 100%"}},"0f74c1cdc9ee43fab5f478f19a3cbf08":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_a51e7d4849f84a3c9f91ffb13b7ff9c8","max":481,"min":0,"orientation":"horizontal","style":"IPY_MODEL_514d368387e04561830c54cca4792e3e","value":481}},"d780d8d2d08f44f9a59bbf239234928c":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_62f12f2815fa4be6af506f0e83ae0a31","placeholder":"","style":"IPY_MODEL_f90554be647a45aa9ead732bba2d2829","value":" 481/481 [00:00<00:00, 21.9kB/s]"}},"6e35bab8e3914b8fa8a5947b00c26418":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"ccf44f04b1ab497a9f4c48d0a1f054e9":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"52af8d2b6d7e4f27847717d3884aac93":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"a51e7d4849f84a3c9f91ffb13b7ff9c8":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"514d368387e04561830c54cca4792e3e":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"62f12f2815fa4be6af506f0e83ae0a31":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"f90554be647a45aa9ead732bba2d2829":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"cea579065429492994985306f09a76ac":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_742a22e2b15649c09ea544d5ceabb7c2","IPY_MODEL_1b2540364181431c94b949b16e1936b6","IPY_MODEL_559ae56a2c214842962dd9e71a7472b0"],"layout":"IPY_MODEL_82c8767aa0c14a83816843c330ba98fd"}},"742a22e2b15649c09ea544d5ceabb7c2":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_d22450f05753463087387ee6b60f5445","placeholder":"","style":"IPY_MODEL_ef555153f0784cdb952b72ce2afdee6a","value":"Downloading: 100%"}},"1b2540364181431c94b949b16e1936b6":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_0d79b0eb124d439baec5867d803f3da5","max":231508,"min":0,"orientation":"horizontal","style":"IPY_MODEL_0befabf434da470387cdddd065157f77","value":231508}},"559ae56a2c214842962dd9e71a7472b0":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_ae00a33c611e4b688d7094059a019a57","placeholder":"","style":"IPY_MODEL_ea20208b43fb468ab2e4cdd7ad7525a5","value":" 232k/232k [00:00<00:00, 282kB/s]"}},"82c8767aa0c14a83816843c330ba98fd":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"d22450f05753463087387ee6b60f5445":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"ef555153f0784cdb952b72ce2afdee6a":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"0d79b0eb124d439baec5867d803f3da5":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0befabf434da470387cdddd065157f77":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"ae00a33c611e4b688d7094059a019a57":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"ea20208b43fb468ab2e4cdd7ad7525a5":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"5501120ff0384883b5a711a9db4cb173":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_9467794698a7405e878778d88b467a50","IPY_MODEL_d9c47160c281475a967e3e6b7682b1ad","IPY_MODEL_3b874b63434b4df893864af836006a67"],"layout":"IPY_MODEL_28635602ddaa4a94a72539b408b78304"}},"9467794698a7405e878778d88b467a50":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_28824996486347e3a12c45264a1fe3af","placeholder":"","style":"IPY_MODEL_2dc1e35e83424302a116466bb404e42b","value":"Downloading: 100%"}},"d9c47160c281475a967e3e6b7682b1ad":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_0f4920c2f69e43a0b67817aa32cd7061","max":28,"min":0,"orientation":"horizontal","style":"IPY_MODEL_74f918f081514c92be4175321a974d5a","value":28}},"3b874b63434b4df893864af836006a67":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_1677722e695d483fa53455796491dac9","placeholder":"","style":"IPY_MODEL_bc82864c20f14cc7a23861807c757915","value":" 28.0/28.0 [00:00<00:00, 1.11kB/s]"}},"28635602ddaa4a94a72539b408b78304":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"28824996486347e3a12c45264a1fe3af":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"2dc1e35e83424302a116466bb404e42b":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"0f4920c2f69e43a0b67817aa32cd7061":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"74f918f081514c92be4175321a974d5a":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"1677722e695d483fa53455796491dac9":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"bc82864c20f14cc7a23861807c757915":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"f112485077df4b6699152f0df9f64401":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_8ff9709a9b6f4d8fb8d70c00fc0ee7a3","IPY_MODEL_2fdeaf4420dc4507ad89100fb59d5193","IPY_MODEL_02fcb25961414b5dad12c6d075ba23e5"],"layout":"IPY_MODEL_541651eaeaa7439d823c9b0587755298"}},"8ff9709a9b6f4d8fb8d70c00fc0ee7a3":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_0b53f2df36e74429bbcebee4e8781884","placeholder":"","style":"IPY_MODEL_b82799e323964fadaab21616a36ef3d4","value":"Downloading: 100%"}},"2fdeaf4420dc4507ad89100fb59d5193":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_12a0ba86c5ec4b87b6b980fa20dc9284","max":483,"min":0,"orientation":"horizontal","style":"IPY_MODEL_b4a1533b3d514069b7e74eadbafc4aca","value":483}},"02fcb25961414b5dad12c6d075ba23e5":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_d3351379cade45bbae7d49183ae3dc4e","placeholder":"","style":"IPY_MODEL_a00ce39dab4b40a49b4b7d7dff2895e3","value":" 483/483 [00:00<00:00, 21.9kB/s]"}},"541651eaeaa7439d823c9b0587755298":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"0b53f2df36e74429bbcebee4e8781884":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"b82799e323964fadaab21616a36ef3d4":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"12a0ba86c5ec4b87b6b980fa20dc9284":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"b4a1533b3d514069b7e74eadbafc4aca":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"d3351379cade45bbae7d49183ae3dc4e":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"a00ce39dab4b40a49b4b7d7dff2895e3":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"e80c48a2413f46f0b18071d8ae292c71":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_d109089e80ce403d8d0f7736a27ab803","IPY_MODEL_a9aa65910ba44084819416b4412b3dbb","IPY_MODEL_ebeff3c03669409ea0487721ca59da2b"],"layout":"IPY_MODEL_fe5b84997c544e3ba5949ab33c279a21"}},"d109089e80ce403d8d0f7736a27ab803":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_298d530c6c2247aab4a014ad79989de6","placeholder":"","style":"IPY_MODEL_bc8b468e9e4d47c888ccab132d65a7dd","value":"Downloading: 100%"}},"a9aa65910ba44084819416b4412b3dbb":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_ec3580f186d64171bc23e64b2a639178","max":536063208,"min":0,"orientation":"horizontal","style":"IPY_MODEL_eff4843c08954d63ae2eccb762a7c489","value":536063208}},"ebeff3c03669409ea0487721ca59da2b":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_c7be6070eeca4eb7a69a2a451ecd5fe7","placeholder":"","style":"IPY_MODEL_ff7ade4160a84910a9952bae5448e891","value":" 536M/536M [00:08<00:00, 34.6MB/s]"}},"fe5b84997c544e3ba5949ab33c279a21":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"298d530c6c2247aab4a014ad79989de6":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"bc8b468e9e4d47c888ccab132d65a7dd":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"ec3580f186d64171bc23e64b2a639178":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"eff4843c08954d63ae2eccb762a7c489":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"c7be6070eeca4eb7a69a2a451ecd5fe7":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"ff7ade4160a84910a9952bae5448e891":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"dafdaf89e1c14703a022e80e01d2342d":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_8b64ba2f1b6b49aead1dec5ff94686ae","IPY_MODEL_fe8937303659488893d23291809dcdc0","IPY_MODEL_a4004a8d732e4e9b91b3209b6e448581"],"layout":"IPY_MODEL_55123e275855429a9d138c7f2098292c"}},"8b64ba2f1b6b49aead1dec5ff94686ae":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_a0bb419b20a145ff848212d1b5a06108","placeholder":"","style":"IPY_MODEL_62cecf54689044a8bc5e974127b9dceb","value":"Downloading: 100%"}},"fe8937303659488893d23291809dcdc0":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_eb1c36074cba4a5f8de70f76504c4b3e","max":657434796,"min":0,"orientation":"horizontal","style":"IPY_MODEL_e2b99060ac4c4107942165b5beb8fb9d","value":657434796}},"a4004a8d732e4e9b91b3209b6e448581":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_8c46b30c48ac4ba5b5946f7650ef5a6d","placeholder":"","style":"IPY_MODEL_259cd37d7eb047218859f66c1523ce7a","value":" 657M/657M [00:12<00:00, 61.7MB/s]"}},"55123e275855429a9d138c7f2098292c":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"a0bb419b20a145ff848212d1b5a06108":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"62cecf54689044a8bc5e974127b9dceb":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"eb1c36074cba4a5f8de70f76504c4b3e":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e2b99060ac4c4107942165b5beb8fb9d":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"8c46b30c48ac4ba5b5946f7650ef5a6d":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"259cd37d7eb047218859f66c1523ce7a":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"cd5eba09bee74059af917bf065c5bb06":{"model_module":"@jupyter-widgets/controls","model_name":"HBoxModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_e857a9d9a01f4e328e03de25c0209cf4","IPY_MODEL_6f53f77ed1a64c89a08d319319c98c90","IPY_MODEL_bdaaba19bb8c4bf5ad5e1386c1a3fa88"],"layout":"IPY_MODEL_f5740c9c625348ceb620e529f614d562"}},"e857a9d9a01f4e328e03de25c0209cf4":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_db4620b626164488ae7bfcd49092922c","placeholder":"","style":"IPY_MODEL_4e028a3e5d3d43698e7d4c5e81c8a9d6","value":"Downloading: 100%"}},"6f53f77ed1a64c89a08d319319c98c90":{"model_module":"@jupyter-widgets/controls","model_name":"FloatProgressModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_37c19bbc280041a295522cedd16c76ab","max":363423424,"min":0,"orientation":"horizontal","style":"IPY_MODEL_77761712628c4def934c228ccdc75a7e","value":363423424}},"bdaaba19bb8c4bf5ad5e1386c1a3fa88":{"model_module":"@jupyter-widgets/controls","model_name":"HTMLModel","model_module_version":"1.5.0","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_e3e33456431e489e8800162b4424eef2","placeholder":"","style":"IPY_MODEL_772d5f73185a4863b42045533eba6db7","value":" 363M/363M [00:07<00:00, 61.9MB/s]"}},"f5740c9c625348ceb620e529f614d562":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"db4620b626164488ae7bfcd49092922c":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"4e028a3e5d3d43698e7d4c5e81c8a9d6":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"37c19bbc280041a295522cedd16c76ab":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"77761712628c4def934c228ccdc75a7e":{"model_module":"@jupyter-widgets/controls","model_name":"ProgressStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"e3e33456431e489e8800162b4424eef2":{"model_module":"@jupyter-widgets/base","model_name":"LayoutModel","model_module_version":"1.2.0","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"772d5f73185a4863b42045533eba6db7":{"model_module":"@jupyter-widgets/controls","model_name":"DescriptionStyleModel","model_module_version":"1.5.0","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}}}}},"nbformat":4,"nbformat_minor":0}