-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlad_C_PCA_S.m
executable file
·77 lines (60 loc) · 1.77 KB
/
lad_C_PCA_S.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
function [out, t] = lad_C_PCA_S(X, e)
%LAD_C_PCA_S LAD Detector (PCA, Cauchy distance, spatial variant)
% This function implements the LAD Detector (using Cauchy distance).
% Given the image X, it returns the likelihood map of each pixel to be
% anomalous.
% Each pixel is evaluated considering itself and its 4-connected
% neighbors.
% In this version, RX Detector is computed using a subset of eigenvalues
% and eigenvectors. The percentage of energy to be preserved is given by
% the parameter e. The number of preserved components is given out as t.
% Parameter e is optional and if not given, its default value is 1,
% meaning that all energy is preserved.
if ~exist('e','var')
e = 1;
end
sz = size(X);
c = sz(3);
X = reshape(X, [sz(1)*sz(2) c]);
i = (1:sz(1)*sz(2))';
nb = [0 +1 -1 +sz(1) -sz(1)];
ii = repmat(i, [1 5]);
nbb = repmat(nb, [length(i) 1]);
nii = ismember(ii+nbb, i);
ii = ii + nii.*nbb;
ii = kron(ii, ones([1 c]));
j = ((1:c)-1)*sz(1)*sz(2);
jj = repmat(j, [length(i) 5]);
ij = ii+jj;
x = X(ij);
M = mean(x);
x = x-repmat(M, [sz(1)*sz(2) 1]);
out = zeros([sz(1) sz(2)]);
A = abs(bsxfun(@minus,M,M'));
a = mean(M);
A = 1./(1+(A./a).^2);
n = c*5;
A1 = ones(c);
A2 = eye(c);
Am = zeros(n);
Am(1:c, 1:n) = repmat(A2, [1 5]);
Am(1:n, 1:c) = repmat(A2, [5 1]);
Am(1:c, 1:c) = A1;
Am((c+1):(2*c), (c+1):(2*c)) = A1;
Am((2*c+1):(3*c), (2*c+1):(3*c)) = A1;
Am((3*c+1):(4*c), (3*c+1):(4*c)) = A1;
Am((4*c+1):(5*c), (4*c+1):(5*c)) = A1;
A = A.*Am;
A = A - eye(size(A));
D = diag(sum(A));
L = D - A;
L = D^(-1/2) * L * D^(-1/2);
[v, l] = eig(L);
[ls, li] = sort(diag(l));
v = real(v(:,li));
y = v'*x';
t = max([1 find(cumsum(sum(y'.^2)/sum(y(:).^2))<=e,1,'last')]);
y = y(1:t,:);
l = repmat(real(ls(1:t)),[1 length(i)]);
out(i) = sum((y.^2).*l, 1);
end