-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Replace repository with revised folder
- Loading branch information
Gabriela Lobinska
committed
Jun 8, 2023
1 parent
6dbe996
commit ffdb8a3
Showing
9,891 changed files
with
33,362 additions
and
0 deletions.
The diff you're trying to view is too large. We only load the first 3000 changed files.
There are no files selected for viewing
526 changes: 526 additions & 0 deletions
526
ERF_heatmaps/.ipynb_checkpoints/Heatmaps ERF-checkpoint.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
354 changes: 354 additions & 0 deletions
354
ERF_heatmaps/.ipynb_checkpoints/Parsing Cmaps Omicron-checkpoint.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,354 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "09c64da6", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import pickle\n", | ||
"import pandas as pd\n", | ||
"import numpy as np\n", | ||
"from itertools import combinations\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"from numpy import nan" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "2bd7d713", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"files = [x for x in os.listdir('heatmap_ERF_omicron/') if 'results' in x]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "a9a05c92", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"all_results = []\n", | ||
"for file in files:\n", | ||
" with open('heatmap_ERF_omicron/'+file, 'rb') as f:\n", | ||
" result_file = pickle.load(f)\n", | ||
" for r in result_file['results']:\n", | ||
" all_results.append(r)\n", | ||
" \n", | ||
"result_df = pd.DataFrame(all_results)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "72331064", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"with open('heatmap_ERF_omicron/paramgrid_params_omicron.txt','rb') as f:\n", | ||
" param_grid = pickle.load(f)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"id": "05876920", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"along_ap = sorted(list(set(result_df['ap'])))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"id": "b63751be", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"along_m = sorted(list(set(result_df['m'])))\n", | ||
"along_n = sorted(list(set(result_df['n'])))\n", | ||
"along_ap = sorted(list(set(result_df['ap'])))\n", | ||
"along_ttr = sorted(list(set(result_df['ttr'])))\n", | ||
"along_qd = sorted(list(set(result_df['qd'])))\n", | ||
"along_m.remove(20000)\n", | ||
"along_ap.remove(6.03)\n", | ||
"along_ttr.remove(5)\n", | ||
"along_qd.remove(1-3e-6)\n", | ||
"along_n.remove(100)\n", | ||
"all_along_params = [('m',along_m), ('n',along_n), ('ap',along_ap), ('ttr',along_ttr), ('qd',along_qd)]\n", | ||
"all_names_params = ['m', 'n', 'ap', 'ttr', 'qd']" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"id": "9d0ad0e1", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"all_colormap_params = list(combinations(all_along_params, 2))\n", | ||
"all_colormap_names = list(combinations(all_names_params,2))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"id": "23534600", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"dict_other_vals = {'m':20000, 'n':100, 'ap': 6.03, 'qd':1-3e-6, 'ttr':5}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "6ef4c643", | ||
"metadata": {}, | ||
"source": [ | ||
"#### 1) Generating all matrices for colormaps" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "79d3ba54", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"('m', 'n')\n", | ||
"('m', 'ap')\n", | ||
"('m', 'ttr')\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"all_matrices_for_cmap = []\n", | ||
"\n", | ||
"for comb in all_colormap_params:\n", | ||
" params_axes = (comb[0][0], comb[1][0])\n", | ||
" print(params_axes)\n", | ||
" other_params = set(all_names_params)-set(params_axes)\n", | ||
"\n", | ||
" colormap_params = np.zeros((len(comb[0][1]), len(comb[1][1])))\n", | ||
" \n", | ||
" for xind in range(len(comb[0][1])):\n", | ||
" for yind in range(len(comb[0][1])):\n", | ||
" df_axes = result_df.copy()\n", | ||
" for p in other_params:\n", | ||
" df_axes = df_axes[df_axes[p] == dict_other_vals[p]]\n", | ||
" df_axes = df_axes[(df_axes[params_axes[0]] == comb[0][1][xind])&(df_axes[params_axes[1]] == comb[1][1][yind])]\n", | ||
" colormap_params[xind, yind] = list(df_axes['Y_treatment'])[0]/list(df_axes['Y_control'])[0]\n", | ||
" \n", | ||
" all_matrices_for_cmap.append(colormap_params)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "42e11dce", | ||
"metadata": {}, | ||
"source": [ | ||
"#### 2) Plotting all 10 cmaps" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "a07eb2d1", | ||
"metadata": {}, | ||
"source": [ | ||
"##### Indices for plots" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "122828c7", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"indices_colormaps = []\n", | ||
"for i in range(5):\n", | ||
" for j in range(2):\n", | ||
" indices_colormaps.append((i,j))\n", | ||
"indices_colormaps = dict(zip(range(10), indices_colormaps))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "3e1fd29b", | ||
"metadata": {}, | ||
"source": [ | ||
"##### Labels for axes" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "9e8378e3", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def calculate_ticks(ticklabels, truerange, tickrange):\n", | ||
" tick_pos = []\n", | ||
" for l in ticklabels:\n", | ||
" NewValue = (((l - truerange[0]) * (tickrange[1] - tickrange[0])) / (truerange[1] - truerange[0])) + tickrange[0]\n", | ||
" tick_pos.append(NewValue)\n", | ||
" return(np.array(tick_pos))\n", | ||
"\n", | ||
"def calculate_ticks_log(ticklabels, truerange, tickrange):\n", | ||
" tick_labels = np.log(ticklabels)\n", | ||
" true_range = np.log(truerange)\n", | ||
" tick_pos = []\n", | ||
" for l in ticklabels:\n", | ||
" NewValue = (((l - truerange[0]) * (tickrange[1] - tickrange[0])) / (truerange[1] - truerange[0])) + tickrange[0]\n", | ||
" tick_pos.append(NewValue)\n", | ||
" return(np.array(tick_pos))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a970b425", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"param_ticks = {'m':[1500,5000,10000,15000,20000,25000,29900],\n", | ||
" 'n':[1,200,400,600,800,1000],\n", | ||
" 'ap':[7.7,8.0,8.3,8.6,8.8],\n", | ||
" 'qd':[1-1e-6,1-3e-6,1-5e-6,1-7.5e-6,1-1e-5], \n", | ||
" 'ttr':[0,3,7,10,14]}\n", | ||
"param_ranges = {'m':[1500,29900],\n", | ||
" 'n':[1,1000],\n", | ||
" 'ap':[7.7,8.8],\n", | ||
" 'qd':[1e-6,1e-5],\n", | ||
" 'ttr':[0,14]}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ca6b4494", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"all_xticks, all_yticks = [],[]\n", | ||
"all_xticklabels, all_yticklabels = [],[]\n", | ||
"\n", | ||
"for i in range(10):\n", | ||
" \n", | ||
" x_param, y_param = all_colormap_names[i]\n", | ||
"\n", | ||
" if y_param == 'qd':\n", | ||
" ticks_y = calculate_ticks_log(1-np.array(param_ticks[y_param]), param_ranges[y_param], [0,19])\n", | ||
" else:\n", | ||
" ticks_y = calculate_ticks(np.array(param_ticks[y_param]), param_ranges[y_param], [0,19])\n", | ||
" \n", | ||
" if y_param == 'qd':\n", | ||
" labels_y = list([\"{:.1e}\".format(1-x) for x in np.array(param_ticks[y_param])])\n", | ||
" elif y_param == 'ap':\n", | ||
" labels_y = [np.round(x,2) for x in param_ticks[y_param]]\n", | ||
" else:\n", | ||
" labels_y = [int(np.round(x)) for x in param_ticks[y_param]]\n", | ||
" \n", | ||
" if x_param == 'qd': \n", | ||
" ticks_x = 19-np.array(calculate_ticks_log(1-np.array(param_ticks[x_param]), param_ranges[x_param], [0,19])[::-1])\n", | ||
" else:\n", | ||
" ticks_x = 19-np.array(calculate_ticks(np.array(param_ticks[x_param]), param_ranges[x_param], [0,19])[::-1])\n", | ||
" \n", | ||
"\n", | ||
" if x_param == 'qd':\n", | ||
" labels_x = list([\"{:.1e}\".format(1-x) for x in np.array(param_ticks[x_param])])\n", | ||
" elif x_param == 'ap':\n", | ||
" labels_x = [np.round(x,2) for x in param_ticks[x_param]]\n", | ||
" else:\n", | ||
" labels_x = [int(np.round(x)) for x in param_ticks[x_param]]\n", | ||
" \n", | ||
" \n", | ||
" all_xticks.append(ticks_x)\n", | ||
" all_yticks.append(ticks_y)\n", | ||
" all_xticklabels.append(labels_x)\n", | ||
" all_yticklabels.append(labels_y)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "3f2160fa", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"params_description = {'m':'Number of lethal positions $m$',\n", | ||
" 'n':'Number of gain-of-function positions $n$',\n", | ||
" 'ap': 'Clearance rate in clearance phase $a_1$',\n", | ||
" 'qd': 'Viral mutation rate under treatment $u_1$',\n", | ||
" 'ttr': 'Time of start of treatment'}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f5a8b86c", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"fig, ax = plt.subplots(5,2,figsize=(8,18))\n", | ||
"\n", | ||
"for i in range(10):\n", | ||
" im = ax[indices_colormaps[i]].imshow(all_matrices_for_cmap[i][::-1], cmap = 'seismic', vmin = 0., vmax = 2)\n", | ||
" if all_colormap_params[i][1][0] in ['qd']:\n", | ||
" im = ax[indices_colormaps[i]].imshow(np.flip(all_matrices_for_cmap[i][::-1],1), cmap = 'seismic', vmin = 0., vmax = 2)\n", | ||
"\n", | ||
" ax[indices_colormaps[i]].set_xticks(all_yticks[i])\n", | ||
" ax[indices_colormaps[i]].set_xticklabels(all_yticklabels[i])\n", | ||
" \n", | ||
" ax[indices_colormaps[i]].set_yticks(all_xticks[i])\n", | ||
" ax[indices_colormaps[i]].set_yticklabels(all_xticklabels[i][::-1]) \n", | ||
" \n", | ||
" \n", | ||
" ax[indices_colormaps[i]].set_ylabel(params_description[all_colormap_params[i][0][0]])\n", | ||
" ax[indices_colormaps[i]].set_xlabel(params_description[all_colormap_params[i][1][0]])\n", | ||
" \n", | ||
" \n", | ||
"plt.tight_layout(pad=1.0)\n", | ||
"#plt.savefig('colormaps_gradualclearance_all_params_FEB1.jpg', dpi = 600)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7a86a303", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.8" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.