- 주제: 이미지 초해상화(Image Super-Resolution)를 위한 AI 알고리즘 개발
- 목적: 품질이 저하된 저해상도 촬영 이미지(512X512)를 고품질의 고해상도 촬영 이미지(2048X2048)로 생성
- 주최: AI 양재 허브
- 주관: 데이콘
- 수상: https://dacon.io/competitions/official/235977/codeshare/6887
박수철, 장진우, 윤성국, 양성모
- OS : ubuntu
- Python : > 3.7
- Links:
- create collab notebook on your google drive root.
- connect your google drive by using below code on the your collab notebook then all code will be in the dacon_aisr folder
from google.colab import drive
drive.mount('/content/drive')
%cd '/content/drive/MyDrive/'
!git clone https://github.com/gabrielwithappy/dacon_aisr.git
- Real-ESGAN
L archs
L rrdbnet_selfensemble_arch.py : use self-ensemble of the model (Rotation, Flip)
L ***.py : model pipeline (body - upsample - body -upsample -outlayer)
- Real-ESGAN-interence.ipynb : soft ensemble of models
- options/****.yml : train hyper parameter
- user/dacon_aisr/Real-ESGAN_inference notebook
- follow configuration step of the notebook
- test files should be copied to /Real-ESRGAN/inputs
- trained model should be copied to /Real-ESRGAN/tags
- ensemble result goes to /utility/ensemble/result
:Folder Structure:
/Real-ESRGAN
ㄴ inputs
/tags
/utility
ㄴ ensemble
ㄴ model_1
ㄴ model_2
ㄴ model_3
ㄴ model_4
ㄴ result (the ensemble images of models )