diff --git a/topics/imaging/tutorials/hela-screen-analysis/tutorial.md b/topics/imaging/tutorials/hela-screen-analysis/tutorial.md
index 0a587539c46605..521803cb12e3d9 100644
--- a/topics/imaging/tutorials/hela-screen-analysis/tutorial.md
+++ b/topics/imaging/tutorials/hela-screen-analysis/tutorial.md
@@ -19,7 +19,7 @@ objectives:
- "How to analyse extracted features from an imaging screen in Galaxy."
key_points:
- Galaxy workflows can be used to scale image analysis pipelines to whole screens.
-- Segmented objects can be filtered using the **Filter segmentation** tool.
+- Segmented objects can be filtered using the **Filter label map by rules** tool.
- Galaxy charts can be used to compare features extracted from screens showing cells with different treatments.
requirements:
-
@@ -79,7 +79,7 @@ The dataset required for this tutorial contains a screen of DAPI stained HeLa nu
>
> {% snippet faqs/galaxy/datasets_import_from_data_library.md %}
>
-> 3. **Unzip file** {% icon tool %} with the following parameters:
+> 3. {% tool [Unzip](toolshed.g2.bx.psu.edu/repos/imgteam/unzip/unzip/6.0+galaxy0) %} with the following parameters:
> - {% icon param-file %} *"input_file"*: `Zipped ` input file
> - *"Extract single file"*: `Single file`
> - *"Filepath"*: `B2--W00026--P00001--Z00000--T00000--dapi.tif`
@@ -88,7 +88,7 @@ The dataset required for this tutorial contains a screen of DAPI stained HeLa nu
>
> {% snippet faqs/galaxy/datasets_rename.md %}
>
-> 5. **Unzip file** {% icon tool %} with the following parameters:
+> 5. {% tool [Unzip](toolshed.g2.bx.psu.edu/repos/imgteam/unzip/unzip/6.0+galaxy0) %} with the following parameters:
> - {% icon param-file %} *"input_file"*: `Zipped ` input file
> - *"Extract single file"*: `All files`
>
@@ -106,7 +106,7 @@ The dataset required for this tutorial contains a screen of DAPI stained HeLa nu
>
> {% snippet faqs/galaxy/datasets_import_from_data_library.md %}
>
-> 8. **Unzip** {% icon tool %} to extract the zipped screen:
+> 8. {% tool [Unzip](toolshed.g2.bx.psu.edu/repos/imgteam/unzip/unzip/6.0+galaxy0) %} to extract the zipped screen:
> - {% icon param-file %} *"input_file"*: `Zipped ` input file
> - *"Extract single file"*: `All files`
>
@@ -131,19 +131,19 @@ First, we will create and test a workflow which extracts mean DAPI intensity, ar
> Create feature extraction workflow
>
-> 1. **Filter Image** {% icon tool %} with the following parameters to smooth the image:
-> - *"Image type"*: `Gaussian Blur`
+> 1. {% tool [Filter 2D image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_simple_filter/ip_filter_standard/0.0.3-3) %} with the following parameters to smooth the image:
+> - *"Filter type"*: `Gaussian Blur`
> - *"Radius/Sigma"*: `3`
> - {% icon param-file %} *"Source file"*: `testinput.tif` file
-> 2. **Auto Threshold** {% icon tool %} with the following parameters to segment the image:
-> - {% icon param-file %} *"Source file"*: output of **Filter image** {% icon tool %}
+> 2. {% tool [Threshold image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_auto_threshold/ip_threshold/0.0.5-2) %} with the following parameters to segment the image:
+> - {% icon param-file %} *"Source file"*: output of {% tool [Filter 2D image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_simple_filter/ip_filter_standard/0.0.3-3) %}
> - *"Threshold Algorithm"*: `Otsu`
> - *"Dark Background"*: `Yes`
-> 3. **Split objects** {% icon tool %} with the following parameters to split touching objects:
-> - {% icon param-file %} *"Source file"*: output of **Auto Threshold** {% icon tool %}
+> 3. {% tool [Split binary image using watershed transformation](toolshed.g2.bx.psu.edu/repos/imgteam/2d_split_binaryimage_by_watershed/ip_2d_split_binaryimage_by_watershed/0.0.1-2) %} with the following parameters to split touching objects:
+> - {% icon param-file %} *"Source file"*: output of {% tool [Threshold image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_auto_threshold/ip_threshold/0.0.5-2) %}
> - *"Minimum distance between two objects."*: `20`
-> 4. **2D Feature Extraction** {% icon tool %} with the following parameters to extract features from the segmented objects:
-> - {% icon param-file %} *"Label file"*: output of **Split objects** {% icon tool %}
+> 4. {% tool [Extract 2D features](toolshed.g2.bx.psu.edu/repos/imgteam/2d_feature_extraction/ip_2d_feature_extraction/0.1.1-2) %} with the following parameters to extract features from the segmented objects:
+> - {% icon param-file %} *"Label file"*: output of {% tool [Split binary image using watershed transformation](toolshed.g2.bx.psu.edu/repos/imgteam/2d_split_binaryimage_by_watershed/ip_2d_split_binaryimage_by_watershed/0.0.1-2) %}
> - *"Use original image to compute additional features."*: `No original image`
> - *"Select features to compute"*: `Select features`
> - *"Available features"*:
@@ -151,12 +151,12 @@ First, we will create and test a workflow which extracts mean DAPI intensity, ar
> - {% icon param-check %} `Area`
> - {% icon param-check %} `Eccentricity`
> - {% icon param-check %} `Major Axis Length`
-> 5. **Filter segmentation** {% icon tool %} with the following parameters to filter the label map from 3. with the extracted features and a set of rules:
-> - {% icon param-file %} *"Source file"*: output of **Split objects** {% icon tool %}
-> - {% icon param-file %} *"Feature file"*: output of **2D Feature Extraction** {% icon tool %}
+> 5. {% tool [Filter label map by rules](toolshed.g2.bx.psu.edu/repos/imgteam/2d_filter_segmentation_by_features/ip_2d_filter_segmentation_by_features/0.0.1) %} with the following parameters to filter the label map from 3. with the extracted features and a set of rules:
+> - {% icon param-file %} *"Source file"*: output of {% tool [Split binary image using watershed transformation](toolshed.g2.bx.psu.edu/repos/imgteam/2d_split_binaryimage_by_watershed/ip_2d_split_binaryimage_by_watershed/0.0.1-2) %}
+> - {% icon param-file %} *"Feature file"*: output of {% tool [Extract 2D features](toolshed.g2.bx.psu.edu/repos/imgteam/2d_feature_extraction/ip_2d_feature_extraction/0.1.1-2) %}
> - {% icon param-file %} *"Rules file"*: rules file
-> 6. **2D Feature Extraction** {% icon tool %} with the following parameters to extract features the final readout from the segmented objects:
-> - {% icon param-file %} *"Label file"*: output of **Filter segmentation** {% icon tool %}
+> 6. {% tool [Extract 2D features](toolshed.g2.bx.psu.edu/repos/imgteam/2d_feature_extraction/ip_2d_feature_extraction/0.1.1-2) %} with the following parameters to extract features the final readout from the segmented objects:
+> - {% icon param-file %} *"Label file"*: output of {% tool [Filter label map by rules](toolshed.g2.bx.psu.edu/repos/imgteam/2d_filter_segmentation_by_features/ip_2d_filter_segmentation_by_features/0.0.1) %}
> - *"Use original image to compute additional features."*: `Use original image`
> - {% icon param-file %} *"Original image file"*: `testinput.tif` file
> - *"Select features to compute"*: `Select features`
@@ -166,13 +166,13 @@ First, we will create and test a workflow which extracts mean DAPI intensity, ar
> - {% icon param-check %} `Major Axis Length`
> 7. Now we can extract the workflow for batch processing
> - Name it "feature_extraction".
-> - Remember to exclude **Unzip** {% icon tool %} by unchecking the tool.
+> - Remember to exclude {% tool [Unzip](toolshed.g2.bx.psu.edu/repos/imgteam/unzip/unzip/6.0+galaxy0) %} by unchecking the tool.
> - Don't treat `B2.zip` and `B3.zip` as inputs (the workflow is supposed to be applied to the images directly).
>
> {% snippet faqs/galaxy/workflows_extract_from_history.md %}
>
> 8. Edit the workflow you just created
-> - Add the tool **Input dataset** {% icon tool %} and name it `input image`.
+> - Add the tool {% tool Input dataset %} and name it `input image`.
> - Name the input for the rules file `filter rules`.
> - Mark the results of steps 5 and 6 as outputs (by clicking on the asterisk next to the output name).
>
@@ -191,12 +191,12 @@ Now we want to apply our extracted workflow to `original data` and merge the res
> 1. Create a new workflow in the workflow editor.
>
> {% snippet faqs/galaxy/workflows_create_new.md %}
-> 2. Add a **Input dataset collection** node and name it `input images`
-> 3. Add a **Input dataset** node and name it `rules`
+> 2. Add a {% tool Input dataset collection %} node and name it `input images`
+> 3. Add a {% tool Input dataset %} node and name it `rules`
> 4. Add the **feature_extraction** workflow as node.
-> - {% icon param-file %} *"input image"*: `input images` output of **Input dataset collection** {% icon tool %}
-> - {% icon param-file %} *"filter rules"*: `rules` output of **Input dataset** {% icon tool %}
-> 5. Add a **Collapse Collection** {% icon tool %} node.
+> - {% icon param-file %} *"input image"*: `input images` output of {% tool Input dataset collection %}
+> - {% icon param-file %} *"filter rules"*: `rules` output of {% tool Input dataset %}
+> 5. Add a {% tool Collapse Collection %} node.
> - {% icon param-file %} *"Collection of files to collapse into single dataset"*: output of **feature_extraction** workflow
> - *"Keep one header line"*: `Yes`
> - *"Append File name"*: `No`
@@ -225,7 +225,7 @@ Finally, we want to plot the results for better interpretation.
> Plot feature extraction results
>
-> 1. Click on the `Visualize this data` {% icon galaxy-barchart %} icon of the **Collapse Collection** {% icon tool %} results.
+> 1. Click on the `Visualize this data` {% icon galaxy-barchart %} icon of the {% tool Collapse Collection %} results.
> 2. Run `Box plot` with the following parameters:
> - *"Provide a title"*: `Screen features`
> - *"X-Axis label"*:
diff --git a/topics/imaging/tutorials/imaging-introduction/tutorial.md b/topics/imaging/tutorials/imaging-introduction/tutorial.md
index 7b94e3827aca36..9e9837e8b31fca 100644
--- a/topics/imaging/tutorials/imaging-introduction/tutorial.md
+++ b/topics/imaging/tutorials/imaging-introduction/tutorial.md
@@ -89,7 +89,7 @@ Now, we can extract metadata from an image.
> Extract Image Metadata
>
-> 1. {% tool [Image Info](toolshed.g2.bx.psu.edu/repos/imgteam/image_info/ip_imageinfo/0.2) %} with the following parameters to extract metadata from the image:
+> 1. {% tool [Show image info](toolshed.g2.bx.psu.edu/repos/imgteam/image_info/ip_imageinfo/0.2) %} with the following parameters to extract metadata from the image:
> - {% icon param-file %} *"Input Image"*: `input.tif` file (output of the previous step)
> 2. Click on the {% icon galaxy-eye %} (eye) icon next to the file name, to look at the file content and search for image acquisition information
>
@@ -113,10 +113,9 @@ Not all tools can handle all image formats. Especially proprietary microscope im
> Convert Image
>
-> 1. {% tool [Convert image](toolshed.g2.bx.psu.edu/repos/imgteam/bfconvert/ip_convertimage/6.7.0+galaxy0) %} with the following parameters to convert the image to PNG:
+> 1. {% tool [Convert image format](toolshed.g2.bx.psu.edu/repos/imgteam/bfconvert/ip_convertimage/6.7.0+galaxy2) %} with the following parameters to convert the image to PNG:
> - {% icon param-file %} *"Input Image"*: `input.tif` file
> - *"Output data type"*: `PNG`
-> - *"Pyramid image"*: `No Pyramid`
> 2. Rename {% icon galaxy-pencil %} the generated file to `viz_input`
> 3. Click on the {% icon galaxy-eye %} (eye) icon next to the file name to look at the file content
>
@@ -142,12 +141,12 @@ Next we will normalize the histogram to improve the contrast. We do this using a
> Normalize Histogram and Convert Image
>
-> 1. {% tool [Histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1) %} with the following parameters to normalize the histogram of the image:
+> 1. {% tool [Perform histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1-2) %} with the following parameters to normalize the histogram of the image:
> - {% icon param-file %} *"Source file"*: `input.tif` file
> - *"Histogram Equalization Algorithm"*: `CLAHE`
> 2. Rename {% icon galaxy-pencil %} the generated file to `input_normalized`
-> 3. {% tool [Convert image](toolshed.g2.bx.psu.edu/repos/imgteam/bfconvert/ip_convertimage/6.7.0+galaxy0) %} with the following parameters to convert the image to PNG:
-> - {% icon param-file %} *"Input Image"*: `input_normalized` file (output of {% tool [Histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1) %})
+> 3. {% tool [Convert image format](toolshed.g2.bx.psu.edu/repos/imgteam/bfconvert/ip_convertimage/6.7.0+galaxy2) %} with the following parameters to convert the image to PNG:
+> - {% icon param-file %} *"Input Image"*: `input_normalized` file (output of {% tool [Perform histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1-2) %})
> - *"Output data type"*: `PNG`
> 4. Rename {% icon galaxy-pencil %} the generated file to `viz_normalized`
> 5. Click on the {% icon galaxy-eye %} (eye) icon next to the file name, to look at the file content
@@ -165,17 +164,17 @@ Specific features of interest (e.g., edges, noise) can be enhanced or suppressed
> Filter image
>
-> 1. {% tool [Filter Image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_simple_filter/ip_filter_standard/0.0.3) %} with the following parameters to smooth the image:
-> - *"Image type"*: `Gaussian Blur`
+> 1. {% tool [Filter 2D image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_simple_filter/ip_filter_standard/0.0.3-3) %} with the following parameters to smooth the image:
+> - *"Filter type"*: `Gaussian Blur`
> - *"Radius/Sigma"*: `3`
> - {% icon param-file %} *"Source file"*: `input.tif` file
> 2. Rename {% icon galaxy-pencil %} the generated file to `input_smoothed`
-> 3. {% tool [Histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1) %} with the following parameters to normalize the histogram of the image:
-> - {% icon param-file %} *"Source file"*: `input_smoothed` file (output of {% tool [Filter Image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_simple_filter/ip_filter_standard/0.0.3) %})
+> 3. {% tool [Perform histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1-2) %} with the following parameters to normalize the histogram of the image:
+> - {% icon param-file %} *"Source file"*: `input_smoothed` file (output of {% tool [Filter 2D image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_simple_filter/ip_filter_standard/0.0.3-3) %})
> - *"Histogram Equalization Algorithm"*: `CLAHE`
> 4. Rename {% icon galaxy-pencil %} the generated file to `input_smoothed_normalized`
-> 5. {% tool [Convert image](toolshed.g2.bx.psu.edu/repos/imgteam/bfconvert/ip_convertimage/6.7.0+galaxy0) %} with the following parameters to convert the image to PNG:
-> - {% icon param-file %} *"Input Image"*: `input_smoothed_normalized` file (output of {% tool [Histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1) %})
+> 5. {% tool [Convert image format](toolshed.g2.bx.psu.edu/repos/imgteam/bfconvert/ip_convertimage/6.7.0+galaxy2) %} with the following parameters to convert the image to PNG:
+> - {% icon param-file %} *"Input Image"*: `input_smoothed_normalized` file (output of {% tool [Perform histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1-2) %})
> - *"Output data type"*: `PNG`
> 6. Rename {% icon galaxy-pencil %} the generated file to `viz_smoothed_normalized`
> 7. Click on the {% icon galaxy-eye %} (eye) icon next to the file name, to look at the file content and compare the result with `viz_normalized`. You can observe that `viz_smoothed_normalized` has significant reduced noise.
@@ -192,41 +191,41 @@ Objects of interest like nuclei can be segmented by using a smoothed image and t
> Segment image
>
-> 1. {% tool [Auto Threshold](toolshed.g2.bx.psu.edu/repos/imgteam/2d_auto_threshold/ip_threshold/0.0.5) %} with the following parameters to segment the image:
-> - {% icon param-file %} *"Source file"*: `input_smoothed` file (output of {% tool [Filter Image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_simple_filter/ip_filter_standard/0.0.3) %})
+> 1. {% tool [Threshold image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_auto_threshold/ip_threshold/0.0.5-2) %} with the following parameters to segment the image:
+> - {% icon param-file %} *"Source file"*: `input_smoothed` file (output of {% tool [Filter 2D image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_simple_filter/ip_filter_standard/0.0.3-2) %})
> - *"Threshold Algorithm"*: `Otsu`
> - *"Dark Background"*: `Yes`
> 2. Rename {% icon galaxy-pencil %} the generated file to `input_segmented`
-> 3. {% tool [Binary 2 Label](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4) %} with the following parameters to segment the image:
-> - {% icon param-file %} *"Binary Image File"*: `input_segmented` file (output of {% tool [Auto Threshold](toolshed.g2.bx.psu.edu/repos/imgteam/2d_auto_threshold/ip_threshold/0.0.5) %})
+> 3. {% tool [Convert binary image to label map](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4-2) %} with the following parameters to segment the image:
+> - {% icon param-file %} *"Binary Image File"*: `input_segmented` file (output of {% tool [Threshold image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_auto_threshold/ip_threshold/0.0.5-2) %})
> 4. Rename {% icon galaxy-pencil %} the generated file to `input_segmented_labeled`
-> 5. {% tool [Convert image](toolshed.g2.bx.psu.edu/repos/imgteam/bfconvert/ip_convertimage/6.7.0+galaxy0) %} with the following parameters to convert the image to PNG:
-> - {% icon param-file %} *"Input Image"*: `input_segmented_labeled` file (output of {% tool [Binary 2 Label](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4) %})
+> 5. {% tool [Convert image format](toolshed.g2.bx.psu.edu/repos/imgteam/bfconvert/ip_convertimage/6.7.0+galaxy2) %} with the following parameters to convert the image to PNG:
+> - {% icon param-file %} *"Input Image"*: `input_segmented_labeled` file (output of {% tool [Convert binary image to label map](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4-2) %})
> - *"Output data type"*: `PNG`
> 6. Rename {% icon galaxy-pencil %} the converted image to `viz_segmented`
>
> >
> >
-> > 1. What does {% tool [Binary 2 Label](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4) %} do? (Hint: check the tool help section)
+> > 1. What does {% tool [Convert binary image to label map](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4-2) %} do? (Hint: check the tool help section)
> > 2. View the `viz_segmented` image from the last step, what do you see?
> > - Can you explain this result?
-> > 3. Exercise: Try to make the information in this image better visible (Hint: {% tool [Histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1) %})
+> > 3. Exercise: Try to make the information in this image better visible (Hint: {% tool [Perform histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1-2) %})
> >
> > >
> > > 1. The tool assigns each connected component (e.g., segmented cell) in the image an object id and stores it as the intensity value.
> > > 2. The image looks completely black.
-> > > The object IDs generated by {% tool [Binary 2 Label](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4) %} are relatively low.
+> > > The object IDs generated by {% tool [Convert binary image to label map](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4-2) %} are relatively low.
> > > Since the IDs are stored as intensity values, these are too low to be visible in this case. Nevertheless, there is more
> > > information in this image than meets the eye.
> > > 3. To make labeled objects visible, the values have to be stretched to a larger range of visible intensity values. We
> > > can do that by equalizing the histogram again:
> > >
-> > > - {% tool [Histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1) %} with the following parameters to normalize the intensity values:
-> > > - {% icon param-file %} *"Source file"*: `input_segmented_labeled` file (output of {% tool [Binary 2 Label](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4) %})
+> > > - {% tool [Perform histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1-2) %} with the following parameters to normalize the intensity values:
+> > > - {% icon param-file %} *"Source file"*: `input_segmented_labeled` file (output of {% tool [Convert binary image to label map](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4-2) %})
> > > - *"Histogram Equalization Algorithm"*: `CLAHE`
> > >
-> > > - {% tool [Convert image](toolshed.g2.bx.psu.edu/repos/imgteam/bfconvert/ip_convertimage/6.7.0+galaxy0) %} with the following parameters to convert the image to PNG:
-> > > - {% icon param-file %} *"Input Image"*: output of {% tool [Histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1) %}
+> > > - {% tool [Convert image format](toolshed.g2.bx.psu.edu/repos/imgteam/bfconvert/ip_convertimage/6.7.0+galaxy2) %} with the following parameters to convert the image to PNG:
+> > > - {% icon param-file %} *"Input Image"*: output of {% tool [Perform histogram equalization](toolshed.g2.bx.psu.edu/repos/imgteam/2d_histogram_equalization/ip_histogram_equalization/0.0.1-2) %}
> > > - *"Output data type"*: `PNG`
> > >
> > > The information contained in the original image has now become visible to the human eye:
@@ -236,24 +235,24 @@ Objects of interest like nuclei can be segmented by using a smoothed image and t
> {: .question}
>
>
-> 7. {% tool [Overlay Images](toolshed.g2.bx.psu.edu/repos/imgteam/overlay_images/ip_overlay_images/0.0.3) %} with the following parameters to convert the image to PNG:
+> 7. {% tool [Overlay images](toolshed.g2.bx.psu.edu/repos/imgteam/overlay_images/ip_overlay_images/0.0.3-3) %} with the following parameters to convert the image to PNG:
> - *"How to visualize the overlay?"*: `Segmentation mask over image`
> - {% icon param-file %} *"Image"*: `viz_normalized` file
-> - {% icon param-file %} *"Label image"*: `input_segmented_labeled` file (output of {% tool [Binary 2 Label](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4) %})
+> - {% icon param-file %} *"Label image"*: `input_segmented_labeled` file (output of {% tool [Convert binary image to label map](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4-2) %})
> - *"Contour thickness"*: `2`
> - *"Contour color"*: `red`
> - *"Show labels"*: `yes`
> - *"Label color"*: `yellow`
> 8. Click on the {% icon galaxy-eye %} (eye) icon next to the file name, to look at the file content and assess the segmentation performance
-> 9. {% tool [Count Objects](toolshed.g2.bx.psu.edu/repos/imgteam/count_objects/ip_count_objects/0.0.5) %} with the following parameters to count the segmented objects in the image:
-> - {% icon param-file %} *"Source file"*: `input_segmented_labeled` file (output of {% tool [Binary 2 Label](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4) %})
+> 9. {% tool [Count objects in label map](toolshed.g2.bx.psu.edu/repos/imgteam/count_objects/ip_count_objects/0.0.5-2) %} with the following parameters to count the segmented objects in the image:
+> - {% icon param-file %} *"Source file"*: `input_segmented_labeled` file (output of {% tool [Convert binary image to label map](toolshed.g2.bx.psu.edu/repos/imgteam/binary2labelimage/ip_binary_to_labelimage/0.4-2) %})
>
> >
> >
> > How many objects were segmented?
> >
> > >
-> > > The {% tool [Count Objects](toolshed.g2.bx.psu.edu/repos/imgteam/count_objects/ip_count_objects/0.0.5) %} tool counted 425 objects.
+> > > The {% tool [Count objects in label map](toolshed.g2.bx.psu.edu/repos/imgteam/count_objects/ip_count_objects/0.0.5-2) %} tool counted 425 objects.
> > {: .solution }
> {: .question}
{: .hands_on}