Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updates imaging tutorials to up-to-date tool names and parameters #4512

Merged
merged 5 commits into from
Nov 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 25 additions & 25 deletions topics/imaging/tutorials/hela-screen-analysis/tutorial.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ objectives:
- "How to analyse extracted features from an imaging screen in Galaxy."
key_points:
- Galaxy workflows can be used to scale image analysis pipelines to whole screens.
- Segmented objects can be filtered using the **Filter segmentation** tool.
- Segmented objects can be filtered using the **Filter label map by rules** tool.
- Galaxy charts can be used to compare features extracted from screens showing cells with different treatments.
requirements:
-
Expand Down Expand Up @@ -79,7 +79,7 @@ The dataset required for this tutorial contains a screen of DAPI stained HeLa nu
>
> {% snippet faqs/galaxy/datasets_import_from_data_library.md %}
>
> 3. **Unzip file** {% icon tool %} with the following parameters:
> 3. {% tool [Unzip](toolshed.g2.bx.psu.edu/repos/imgteam/unzip/unzip/6.0+galaxy0) %} with the following parameters:
> - {% icon param-file %} *"input_file"*: `Zipped ` input file
> - *"Extract single file"*: `Single file`
> - *"Filepath"*: `B2--W00026--P00001--Z00000--T00000--dapi.tif`
Expand All @@ -88,7 +88,7 @@ The dataset required for this tutorial contains a screen of DAPI stained HeLa nu
>
> {% snippet faqs/galaxy/datasets_rename.md %}
>
> 5. **Unzip file** {% icon tool %} with the following parameters:
> 5. {% tool [Unzip](toolshed.g2.bx.psu.edu/repos/imgteam/unzip/unzip/6.0+galaxy0) %} with the following parameters:
> - {% icon param-file %} *"input_file"*: `Zipped ` input file
> - *"Extract single file"*: `All files`
>
Expand All @@ -106,7 +106,7 @@ The dataset required for this tutorial contains a screen of DAPI stained HeLa nu
>
> {% snippet faqs/galaxy/datasets_import_from_data_library.md %}
>
> 8. **Unzip** {% icon tool %} to extract the zipped screen:
> 8. {% tool [Unzip](toolshed.g2.bx.psu.edu/repos/imgteam/unzip/unzip/6.0+galaxy0) %} to extract the zipped screen:
> - {% icon param-file %} *"input_file"*: `Zipped ` input file
> - *"Extract single file"*: `All files`
>
Expand All @@ -131,32 +131,32 @@ First, we will create and test a workflow which extracts mean DAPI intensity, ar

> <hands-on-title>Create feature extraction workflow</hands-on-title>
>
> 1. **Filter Image** {% icon tool %} with the following parameters to smooth the image:
> - *"Image type"*: `Gaussian Blur`
> 1. {% tool [Filter 2D image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_simple_filter/ip_filter_standard/0.0.3-3) %} with the following parameters to smooth the image:
> - *"Filter type"*: `Gaussian Blur`
> - *"Radius/Sigma"*: `3`
> - {% icon param-file %} *"Source file"*: `testinput.tif` file
> 2. **Auto Threshold** {% icon tool %} with the following parameters to segment the image:
> - {% icon param-file %} *"Source file"*: output of **Filter image** {% icon tool %}
> 2. {% tool [Threshold image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_auto_threshold/ip_threshold/0.0.5-2) %} with the following parameters to segment the image:
> - {% icon param-file %} *"Source file"*: output of {% tool [Filter 2D image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_simple_filter/ip_filter_standard/0.0.3-3) %}
> - *"Threshold Algorithm"*: `Otsu`
> - *"Dark Background"*: `Yes`
> 3. **Split objects** {% icon tool %} with the following parameters to split touching objects:
> - {% icon param-file %} *"Source file"*: output of **Auto Threshold** {% icon tool %}
> 3. {% tool [Split binary image using watershed transformation](toolshed.g2.bx.psu.edu/repos/imgteam/2d_split_binaryimage_by_watershed/ip_2d_split_binaryimage_by_watershed/0.0.1-2) %} with the following parameters to split touching objects:
> - {% icon param-file %} *"Source file"*: output of {% tool [Threshold image](toolshed.g2.bx.psu.edu/repos/imgteam/2d_auto_threshold/ip_threshold/0.0.5-2) %}
> - *"Minimum distance between two objects."*: `20`
> 4. **2D Feature Extraction** {% icon tool %} with the following parameters to extract features from the segmented objects:
> - {% icon param-file %} *"Label file"*: output of **Split objects** {% icon tool %}
> 4. {% tool [Extract 2D features](toolshed.g2.bx.psu.edu/repos/imgteam/2d_feature_extraction/ip_2d_feature_extraction/0.1.1-2) %} with the following parameters to extract features from the segmented objects:
> - {% icon param-file %} *"Label file"*: output of {% tool [Split binary image using watershed transformation](toolshed.g2.bx.psu.edu/repos/imgteam/2d_split_binaryimage_by_watershed/ip_2d_split_binaryimage_by_watershed/0.0.1-2) %}
> - *"Use original image to compute additional features."*: `No original image`
> - *"Select features to compute"*: `Select features`
> - *"Available features"*:
> - {% icon param-check %} `Add label id of label image`
> - {% icon param-check %} `Area`
> - {% icon param-check %} `Eccentricity`
> - {% icon param-check %} `Major Axis Length`
> 5. **Filter segmentation** {% icon tool %} with the following parameters to filter the label map from 3. with the extracted features and a set of rules:
> - {% icon param-file %} *"Source file"*: output of **Split objects** {% icon tool %}
> - {% icon param-file %} *"Feature file"*: output of **2D Feature Extraction** {% icon tool %}
> 5. {% tool [Filter label map by rules](toolshed.g2.bx.psu.edu/repos/imgteam/2d_filter_segmentation_by_features/ip_2d_filter_segmentation_by_features/0.0.1) %} with the following parameters to filter the label map from 3. with the extracted features and a set of rules:
> - {% icon param-file %} *"Source file"*: output of {% tool [Split binary image using watershed transformation](toolshed.g2.bx.psu.edu/repos/imgteam/2d_split_binaryimage_by_watershed/ip_2d_split_binaryimage_by_watershed/0.0.1-2) %}
> - {% icon param-file %} *"Feature file"*: output of {% tool [Extract 2D features](toolshed.g2.bx.psu.edu/repos/imgteam/2d_feature_extraction/ip_2d_feature_extraction/0.1.1-2) %}
> - {% icon param-file %} *"Rules file"*: rules file
> 6. **2D Feature Extraction** {% icon tool %} with the following parameters to extract features the final readout from the segmented objects:
> - {% icon param-file %} *"Label file"*: output of **Filter segmentation** {% icon tool %}
> 6. {% tool [Extract 2D features](toolshed.g2.bx.psu.edu/repos/imgteam/2d_feature_extraction/ip_2d_feature_extraction/0.1.1-2) %} with the following parameters to extract features the final readout from the segmented objects:
> - {% icon param-file %} *"Label file"*: output of {% tool [Filter label map by rules](toolshed.g2.bx.psu.edu/repos/imgteam/2d_filter_segmentation_by_features/ip_2d_filter_segmentation_by_features/0.0.1) %}
> - *"Use original image to compute additional features."*: `Use original image`
> - {% icon param-file %} *"Original image file"*: `testinput.tif` file
> - *"Select features to compute"*: `Select features`
Expand All @@ -166,13 +166,13 @@ First, we will create and test a workflow which extracts mean DAPI intensity, ar
> - {% icon param-check %} `Major Axis Length`
> 7. Now we can extract the workflow for batch processing
> - Name it "feature_extraction".
> - Remember to exclude **Unzip** {% icon tool %} by unchecking the tool.
> - Remember to exclude {% tool [Unzip](toolshed.g2.bx.psu.edu/repos/imgteam/unzip/unzip/6.0+galaxy0) %} by unchecking the tool.
> - Don't treat `B2.zip` and `B3.zip` as inputs (the workflow is supposed to be applied to the images directly).
>
> {% snippet faqs/galaxy/workflows_extract_from_history.md %}
>
> 8. Edit the workflow you just created
> - Add the tool **Input dataset** {% icon tool %} and name it `input image`.
> - Add the tool {% tool Input dataset %} and name it `input image`.
> - Name the input for the rules file `filter rules`.
> - Mark the results of steps 5 and 6 as outputs (by clicking on the asterisk next to the output name).
>
Expand All @@ -191,12 +191,12 @@ Now we want to apply our extracted workflow to `original data` and merge the res
> 1. Create a new workflow in the workflow editor.
>
> {% snippet faqs/galaxy/workflows_create_new.md %}
> 2. Add a **Input dataset collection** node and name it `input images`
> 3. Add a **Input dataset** node and name it `rules`
> 2. Add a {% tool Input dataset collection %} node and name it `input images`
> 3. Add a {% tool Input dataset %} node and name it `rules`
> 4. Add the **feature_extraction** workflow as node.
> - {% icon param-file %} *"input image"*: `input images` output of **Input dataset collection** {% icon tool %}
> - {% icon param-file %} *"filter rules"*: `rules` output of **Input dataset** {% icon tool %}
> 5. Add a **Collapse Collection** {% icon tool %} node.
> - {% icon param-file %} *"input image"*: `input images` output of {% tool Input dataset collection %}
> - {% icon param-file %} *"filter rules"*: `rules` output of {% tool Input dataset %}
> 5. Add a {% tool Collapse Collection %} node.
> - {% icon param-file %} *"Collection of files to collapse into single dataset"*: output of **feature_extraction** workflow
> - *"Keep one header line"*: `Yes`
> - *"Append File name"*: `No`
Expand Down Expand Up @@ -225,7 +225,7 @@ Finally, we want to plot the results for better interpretation.

> <hands-on-title>Plot feature extraction results</hands-on-title>
>
> 1. Click on the `Visualize this data` {% icon galaxy-barchart %} icon of the **Collapse Collection** {% icon tool %} results.
> 1. Click on the `Visualize this data` {% icon galaxy-barchart %} icon of the {% tool Collapse Collection %} results.
> 2. Run `Box plot` with the following parameters:
> - *"Provide a title"*: `Screen features`
> - *"X-Axis label"*:
Expand Down
Loading
Loading