-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTemplatePupilFinder.py
372 lines (325 loc) · 14.5 KB
/
TemplatePupilFinder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import numpy
import threading
import cv2
from zipfile import ZipFile
from .EyetrackingUtilities import SaveNPY, ReadNPY
from .PupilFinder import PupilFinder, median2way, outliers2nan
from skimage.draw import circle, circle_perimeter as DrawCircle
class TemplatePupilFinder(PupilFinder):
"""
A class that finds pupils by template matching and not fitting a circle.
A pupil is just a black circle on a white background
A glint is just a white circle on a black background close to the pupil
"""
@staticmethod
def Worker(rawFrames, radii, window, bilateral, blur, rawPupilLocations, rawGlintLocations,
pupilTemplates, glintTemplates):
"""
Actual code for template-matching, factored out to a method so it could be multithreaded
@param rawFrames: frame array
@param radii: radii to be used to for template matching
@param window: window in frames to use
@param bilateral: bilateral fiter size
@param blur: mediam flur size
@param rawPupilLocations: where to store found pupil locations
@param rawGlintLocations: where to store found glint locations
@param pupilTemplates: templates for pupils
@param glintTemplates: templates for glints
@type rawFrames: numpy.ndarray
@type radii: list<int>
@type window: tuple<int>
@type bilateral: int?
@type blur: int
@type rawPupilLocations: [frame x value] numpy.ndarray
@type rawGlintLocations: [frame x value] numpy.ndarray
@type pupilTemplates: [w x h x num] numpy.ndarray
@type glintTemplates: [w x h x num] numpy.ndarray
"""
thesePupilPositions = numpy.zeros([len(radii), 2])
thesePupilCorrelations = numpy.zeros(len(radii))
theseGlintPositions = numpy.zeros([9, 2])
theseGlintCorrelations = numpy.zeros([9])
for frameIndex in range(rawFrames.shape[0]):
# === find pupil ===
if window is not None:
frame = rawFrames[frameIndex, window[2]:window[3], window[0]:window[1], :].mean(-1).astype(numpy.uint8)
else:
frame = rawFrames[frameIndex, :, :, :].mean(-1).astype(numpy.uint8)
if (bilateral is not None) and (bilateral > 0):
frame = cv2.bilateralFilter(frame, bilateral, 100, 75)
if (blur > 0):
frame = cv2.medianBlur(frame, blur)
for i in range(len(radii)):
res = cv2.matchTemplate(frame, pupilTemplates[:, :, i], cv2.TM_CCOEFF_NORMED)
_, maxCorr, _, maxPos = cv2.minMaxLoc(res)
thesePupilPositions[i, :] = maxPos
thesePupilCorrelations[i] = maxCorr
best = numpy.argmax(thesePupilCorrelations)
rawPupilLocations[frameIndex, 3] = thesePupilCorrelations[best]
rawPupilLocations[frameIndex, :2] = thesePupilPositions[best, :] + 25
if window is not None:
rawPupilLocations[frameIndex, 0] += window[0]
rawPupilLocations[frameIndex, 1] += window[2]
rawPupilLocations[frameIndex, 2] = radii[best]
# === find glint ===
x = int(thesePupilPositions[best, 0] + 25)
y = int(thesePupilPositions[best, 1] + 25)
frame = frame[(y - 20):(y + 20), (x - 20):(x + 20)] # glint is in close vicinity of the pupil
for i in range(9):
res = cv2.matchTemplate(frame, glintTemplates[:, :, i], cv2.TM_CCOEFF_NORMED)
_, maxCorr, _, maxPos = cv2.minMaxLoc(res)
theseGlintPositions[i, :] = maxPos
theseGlintCorrelations[i] = maxCorr
best = numpy.argmax(theseGlintCorrelations)
rawGlintLocations[frameIndex, 3] = theseGlintCorrelations[best]
rawGlintLocations[frameIndex, :2] = theseGlintPositions[best, :] + 7
rawGlintLocations[frameIndex, 0] += (x - 20)
rawGlintLocations[frameIndex, 1] += (y - 20)
if window is not None:
rawGlintLocations[frameIndex, 0] += window[0]
rawGlintLocations[frameIndex, 1] += window[2]
rawGlintLocations[frameIndex, 2] = (best + 2) / 2.0
def __init__(self, videoFileName = None, window = None, minRadius = 13, maxRadius = 23, blinkThreshold = 1.5, other = None):
"""
Constructor
@param videoFileName: name of video file to parse
@param window: subwindow in frame to examine, order [left, right, top bottom]
@param minRadius: smallest radius to look for
@param maxRadius: biggest radius to look for, should not be bigger than 25
@param blinkThreshold: standard deviations below average confidence to consider to be blinks
@param other: object to copy construct from
@type videoFileName: str?
@type window: 4-ple<int>?
@type minRadius: int
@type maxRadius: int
@type other: VideoReader?
"""
super(TemplatePupilFinder, self).__init__(videoFileName, window, other = other)
self.radii = range(minRadius, maxRadius + 1)
"""
@ivar: Range of pupil radii to search for in pixels
@type: list<int>
"""
self.pupilTemplates = numpy.ones([51, 51, len(self.radii)], numpy.uint8) * 255
"""
@ivar: Templates for matching pupils, black circles on white background
@type: numpy.ndarray
"""
self.glintTemplates = numpy.zeros([15, 15, 9], numpy.uint8) # glint isn't that big, do radius range 1-5 px
"""
@ivar: Templates for matching glints, is white circle on black background
@type: numpy.ndarray
"""
for i in range(2, 11):
y, x = circle(7, 7, i / 2.0)
self.glintTemplates[x, y, i - 2] = 255
self.rawGlintLocations = None
"""
@ivar: Glint locations in each video frame
@type: Optional[numpy.ndarray]
"""
self.filteredGlintLocations = None
"""
@ivar: Temporally filtered glint locations
@type: Optional[numpy.ndarray]
"""
self.param1 = blinkThreshold
self.staleTemplates = True
"""
@ivar: are the templates stale and need to be regenerated?
@type: bool
"""
@PupilFinder.minRadius.setter
def minRadius(self, value):
self._minRadius = value
self.staleTemplates = True
@PupilFinder.maxRadius.setter
def maxRadius(self, value):
self._maxRadius = value
self.staleTemplates = True
def InitFromOther(self, other):
"""
Jank copy constructor
@param other: TemplatPupilFinder
@type other: TemplatPupilFinder
"""
super(TemplatePupilFinder, self).InitFromOther(other)
if other.rawGlintLocations is not None:
self.rawGlintLocations = other.rawGlintLocations.copy()
if other.filteredGlintLocations is not None:
self.filteredGlintLocations = other.filteredGlintLocations.copy()
def GeneratePupilTemplates(self):
"""
Generates templates for the pupil
@return:
"""
self.radii = range(self.minRadius, self.maxRadius + 1)
self.pupilTemplates = numpy.ones([2 * self.maxRadius + 5, 2 * self.maxRadius + 5, len(self.radii)], numpy.uint8) * 255
for i in range(len(self.radii)):
y, x = circle(self.maxRadius + 2, self.maxRadius + 2, self.radii[i])
self.pupilTemplates[x, y, i] = 0
self.staleTemplates = False
def FindPupils(self, endFrame = None, bilateral = None, nThreads = 1):
"""
Finds pupils by template matching
@param endFrame: frame to read to, defaults to reading all rawFrames
@param bilateral: useless here but overridden from parent class
@param nThreads: number of threads to use for finding pupils. need to be implemented
@type endFrame: int?
@type bilateral: int?
@type nThreads: int
"""
if (self.staleTemplates):
self.GeneratePupilTemplates()
if ((endFrame is None) or endFrame > self.nFrames):
endFrame = self.nFrames
# self.frameDiffs = numpy.r_[0, numpy.sum(numpy.diff(self.rawFrames, axis = 0) ** 2, (1, 2, 3))]
# self.blinks = numpy.where(self.frameDiffs > self.frameDiffs.mean() + self.frameDiffs.std() * 2, True, False)
self.rawPupilLocations = numpy.zeros([endFrame, 4]) # here, the colums are [x, y, radius, confidence]
self.rawGlintLocations = numpy.zeros([endFrame, 4])
# === parallel for ===
if nThreads == 1:
TemplatePupilFinder.Worker(self.rawFrames[:endFrame, :, :, :], self.radii, self.window,
bilateral, self.blur, self.rawPupilLocations, self.rawGlintLocations,
self.pupilTemplates, self.glintTemplates)
else:
chunkSize = int(endFrame / nThreads)
threads = []
for thread in range(nThreads):
start = chunkSize * thread
end = start + chunkSize
if thread == (nThreads - 1):
end = endFrame
threads.append(threading.Thread(target = TemplatePupilFinder.Worker,
args = (self.rawFrames[start:end, :, :, :], self.radii, self.window,
bilateral, self.blur, self.rawPupilLocations[start:end, :],
self.rawGlintLocations[start:end, :], self.pupilTemplates,
self.glintTemplates)))
for thread in threads:
thread.start()
for thread in threads:
thread.join()
self.blinks = numpy.where(self.rawPupilLocations[:, 3] < (numpy.mean(self.rawPupilLocations[:, 3]) - self.param1 * numpy.std(self.rawPupilLocations[:, 3])), True, False) # less than -1.5 std confidence = blink
def FilterPupils(self, windowSize = 15, outlierThresholds = None, filterPupilSize = True):
"""
Filters raw pupil and glint locations
@param windowSize: median filter time window size
@param outlierThresholds: thresholds in percentiles at which to nan outliers, if none, does not nan outliers
@param filterPupilSize: filter pupil size alone with position?
@type windowSize: int
@type outlierThresholds: list<float>?
@type filterPupilSize: bool
@return:
"""
super(TemplatePupilFinder, self).FilterPupils(windowSize, outlierThresholds, filterPupilSize)
self.filteredGlintLocations = self.rawGlintLocations.copy()
for i in range(3 if filterPupilSize else 2):
self.filteredGlintLocations[:, i] = median2way(self.filteredGlintLocations[:, i], windowSize)
for i in range(self.nFrames):
if self.blinks[i]:
self.filteredGlintLocations[i, :] = numpy.nan
if (outlierThresholds is not None):
for i in range(3):
if (outlierThresholds[i] is not None):
self.filteredGlintLocations[:, i] = outliers2nan(self.filteredGlintLocations[:, i], outlierThresholds[i])
# 1 nan in row => entire row nan
self.filteredGlintLocations[numpy.isnan(self.filteredGlintLocations.sum(axis = -1))] = numpy.nan
def WritePupilVideo(self, fileName, startFrame = None, endFrame = None, filtered = True, burnLocation = True):
"""
Writes a video with the pupil circled
Writes a video with the pupil circled
@param fileName: file name
@param startFrame: first frame to draw
@param endFrame: last frame to draw, defaults to all of them
@param filtered: use filtered trace instead of unfiltered?
@param burnLocation: burn location of pupil into image?
@param fileName: str
@param startFrame: int?
@param endFrame: int?
@param filtered: bool
@param burnLocation: bool
"""
if (startFrame is None):
startFrame = 0
if (endFrame is None):
endFrame = self.nFrames
if (self.rawPupilLocations is None):
self.FindPupils()
if (filtered and (self.filteredPupilLocations is None)):
self.FilterPupils()
pupils = self.filteredPupilLocations.astype(numpy.int) if filtered else self.rawPupilLocations.astype(numpy.int)
glints = self.filteredGlintLocations.astype(numpy.int) if filtered else self.rawGlintLocations.astype(numpy.int)
video = cv2.VideoWriter(fileName, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), self.fps, (self.width, self.height))
image = numpy.zeros_like(self.rawFrames[0, :, :, :])
for frame in range(startFrame, endFrame):
image = self.rawFrames[frame, :, :, :].copy()
# image[:, :, 1] = image[:, :, 0]
# image[:, :, 2] = image[:, :, 0]
if not (filtered and self.filteredPupilLocations[frame, 0] == numpy.nan):
if (not self.blinks[frame]) and (not numpy.any(numpy.isnan(self.filteredPupilLocations[frame, :]))):
# outline pupil
for radiusOffset in range(-2, 3):
y, x = DrawCircle(pupils[frame, 0], pupils[frame, 1], pupils[frame, 2] + radiusOffset, shape = (self.height, self.width))
image[x, y, 2] = 255
image[(pupils[frame, 1] - 4):(pupils[frame, 1] + 4), (pupils[frame, 0] - 1):(pupils[frame, 0] + 1), 2] = 255
image[(pupils[frame, 1] - 1):(pupils[frame, 1] + 1), (pupils[frame, 0] - 4):(pupils[frame, 0] + 4), 2] = 255
# outline glint
for radiusOffset in range(0, 2):
y, x = DrawCircle(glints[frame, 0], glints[frame, 1], glints[frame, 2] + radiusOffset, shape = (self.height, self.width))
image[x, y, 0] = 255
if burnLocation:
cv2.putText(image, 'x: {:03d} y: {:03d} r: {:03d}'.format(pupils[frame, 0], pupils[frame, 1], pupils[frame, 2]), (10, 20), cv2.FONT_HERSHEY_DUPLEX, 0.75, [0, 255, 0])
cv2.putText(image, 'x: {:03d} y: {:03d} r: {:03d}'.format(glints[frame, 0], glints[frame, 1], glints[frame, 2]), (10, 45), cv2.FONT_HERSHEY_DUPLEX, 0.75, [0, 255, 0])
else:
if burnLocation:
cv2.putText(image, 'Blink', (10, 20), cv2.FONT_HERSHEY_DUPLEX, 0.75, [0, 255, 0])
cv2.putText(image, 'Blink', (10, 45), cv2.FONT_HERSHEY_DUPLEX, 0.75, [0, 255, 0])
if burnLocation:
cv2.putText(image, 'frame {:06d}'.format(frame), (10, 70), cv2.FONT_HERSHEY_DUPLEX, 0.75, [0, 255, 0])
video.write(image)
video.release()
def Save(self, fileName = None, outFile = None):
"""
Save out information
@param fileName: name of file to save, must be not none if fileObject is None
@param outFile: existing object to write to
@type fileName: str?
@type outFile: zipfile?
"""
closeOnFinish = outFile is None # we close the file only if this is the actual function that started the file
if outFile is None:
outFile = ZipFile(fileName, 'w')
super(TemplatePupilFinder, self).Save(None, outFile)
if self.rawGlintLocations is not None:
SaveNPY(self.rawGlintLocations, outFile, 'rawGlintLocations.npy')
if self.filteredGlintLocations is not None:
SaveNPY(self.filteredGlintLocations, outFile, 'filteredGlintLocations.npy')
if closeOnFinish:
outFile.close()
def Load(self, fileName = None, inFile = None):
"""
Loads in information
@param fileName: name of file to read, must not be none if infile is none
@param inFile: existing object to read from
@type fileName: str?
@type inFile: zipfile?
"""
closeOnFinish = inFile is None
if inFile is None:
inFile = ZipFile(fileName, 'r')
super(TemplatePupilFinder, self).Load(None, inFile)
subFiles = inFile.NameToInfo.keys()
if 'rawPupilLocations.npy' in subFiles:
self.rawPupilLocations= ReadNPY(inFile, 'rawPupilLocations.npy')
if 'frameDiffs.npy' in subFiles:
self.frameDiffs = ReadNPY(inFile, 'frameDiffs.npy')
if 'blinks.npy' in subFiles:
self.blinks = ReadNPY(inFile, 'blinks.npy')
if 'filteredPupilLocations.npy' in subFiles:
self.filteredPupilLocations = ReadNPY(inFile, 'filteredPupilLocations.npy')
if 'filteredGlintLocations.npy' in subFiles:
self.filteredGlintLocations = ReadNPY(inFile, 'filteredGlintLocations.npy')
if 'rawGlintLocations.npy' in subFiles:
self.rawGlintLocations = ReadNPY(inFile, 'rawGlintLocations.npy')
if closeOnFinish:
inFile.close()