-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode.py
91 lines (82 loc) · 4.57 KB
/
code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
###############################################################################
# NBC-softmax implementation
# get_feature_dis is from https://github.com/gayanku/PAMC
###############################################################################
class ProjContrastiveModel_BC1(Module):
def __init__(self, proj_dim=16, emb_dim=32, num_classes=-1, tau=0.2, **kwargs):
super().__init__()
self.num_classes = num_classes
self.tau = tau
if proj_dim > 0:
self.auth_emb = nn.Linear(emb_dim, proj_dim)
else:
self.auth_emb = None
print(f' ProjContrastiveModel_BC1 num_classes:{num_classes} tau:{tau} emb_dim:{emb_dim} proj_dim:{proj_dim} {self.auth_emb}' )
self.cos = nn.CosineSimilarity(dim=1, eps=1e-6)
def get_feature_dis(self,x):
#x : batch_size x nhid
#x_dis(i,j): item means the similarity between x(i) and x(j).
x_dis = x@x.T
mask = torch.eye(x_dis.shape[0]).to(x.device)
x_sum = torch.sum(x**2, 1).reshape(-1, 1)
x_sum = torch.sqrt(x_sum).reshape(-1, 1)
x_sum = x_sum @ x_sum.T
x_dis = x_dis*(x_sum**(-1))
x_dis = (1-mask) * x_dis
return x_dis
def loss_calculation(self, z,c, num_classes, tau):
#compute cluster centers CC
ONEHOT = F.one_hot(c, num_classes=num_classes) # N*num_classes
CC = torch.sum(z.unsqueeze(1) * ONEHOT.unsqueeze(2) , dim=0) / torch.clamp( ONEHOT.sum(0).unsqueeze(-1), min=1.0)
# Z(N,FE)->(N,1,FE) * ONEHOT(N,num_classes)->(N,num_classes,1) ==> (N, num_classes, FE) / (num_classes,1) ==>sum(0) ==> num_classes*FE
CC_VALID = CC[ ONEHOT.sum(0) > 0 ]
negative_distances = self.get_feature_dis(CC_VALID)
negative_distances = torch.exp( tau * negative_distances)
negative_distances = negative_distances.sum(1)
lossN = torch.log(negative_distances +1e-10).mean() / num_classes
return lossN
def forward(self, embs, labels):
logits = self.auth_emb(embs) if self.auth_emb is not None else embs
return self.loss_calculation(logits, labels, self.num_classes, self.tau)
###############################################################################
# Helper function to combine mutiple losses at given ratios
###############################################################################
class NCE_Combiner2(nn.Module):
def __init__(self, model1, model2, model2_ratio):
super().__init__()
self.model1 = model1
self.model2 = model2
self.model2_ratio = model2_ratio
def forward(self, embs, labels):
loss1 = self.model1(embs, labels)
loss2 = self.model2(embs, labels)
return (1-self.model2_ratio)*loss1 + self.model2_ratio*loss2
###############################################################################
# Modified get_classwise_nce_model from https://github.com/pranavmaneriker/SYSML
# Mofifications are to add the NBC-softmax as an auxiliary loss
###############################################################################
def get_classwise_nce_model(len_auth_tok, final_dim, classwise_model_params, hparams):
if classwise_model_params["model_type"] == "sm":
sm_model = SoftmaxModel(len_auth_tok, final_dim)
classwise_model = sm_model
elif classwise_model_params["model_type"] == "arcface":
classwise_model = losses.ArcFaceLoss(len_auth_tok, final_dim)
elif classwise_model_params["model_type"] == "contrastive":
classwise_model = losses.ContrastiveLoss()
elif classwise_model_params["model_type"] == "cosface":
classwise_model = losses.CosFaceLoss(len_auth_tok, final_dim)
elif classwise_model_params["model_type"] == "infonce":
classwise_model = losses.NTXentLoss()
elif classwise_model_params["model_type"] == "ms":
classwise_model = losses.MultiSimilarityLoss()
elif classwise_model_params["model_type"] == "COMBO2":
classwise_model_params1 = { "model_type" : classwise_model_params["model1_type"],}
classwise_model_params2 = { "model_type" : classwise_model_params["model2_type"], "proj_dim" : (int)(classwise_model_params["proj_dim"])}
model1 = get_classwise_nce_model(len_auth_tok, final_dim, classwise_model_params1, hparams)
model2 = get_classwise_nce_model(len_auth_tok, final_dim, classwise_model_params2, hparams)
model2_ratio = (float)(classwise_model_params["model2_ratio"])
classwise_model = NCE_Combiner2(model1, model2, model2_ratio)
print(classwise_model)
else:
raise NotImplementedError
return classwise_model