-
Notifications
You must be signed in to change notification settings - Fork 0
/
ocl_gts.py
477 lines (401 loc) · 18.7 KB
/
ocl_gts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
"""
ocl_gts v0.01
pyopencl genetic trade simulator
Copyright 2011 Brian Monkaba
This file is part of ga-bitbot.
ga-bitbot is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
ga-bitbot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ga-bitbot. If not, see <http://www.gnu.org/licenses/>.
"""
import pyopencl as cl
import numpy
# connect to the xml server
#
import xmlrpclib
import json
import gene_server_config
import time
import sys
__server__ = gene_server_config.__server__
__port__ = str(gene_server_config.__port__)
#make sure the port number matches the server.
server = xmlrpclib.Server('http://' + __server__ + ":" + __port__)
print "Connected to",__server__,":",__port__
from bct import *
from genetic import *
from load_config import *
import pdb
import time
import hashlib
if __name__ == "__main__":
__appversion__ = "0.01a"
print "OpenCL Genetic Bitcoin Trade Simulator v%s"%__appversion__
deep_logging_enable = False;
max_length = 120000
load_throttle = 0 #go easy on cpu usage
calibrate = 1 #set to one to adjust the population size to maintain a one min test cycle
work_group_size = 6
work_item_size = 128
max_open_orders = 512 #MUST MATCH THE OPENCL KERNEL !!!!
order_array_size = 16 #MUST MATCH THE OPENCL KERNEL !!!!
#init pyopencl
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)
mf = cl.mem_flags
#read in the OpenCL source file as a string
#f = open("gkernel.cl", 'r')
f = open("gkernel_macd.cl", 'r')
fstr = "".join(f.readlines())
#create the program
ocl_program = cl.Program(ctx, fstr).build('-w') #'-g -O0 -cl-opt-disable -w'
#kernel = ocl_program.fitness
kernel = ocl_program.macd
ocl_mb_wg_macd_pct = None
input_len = 0
def load():
global ocl_mb_wg_macd_pct
global input_len
#open the history file
#print "loading the data set"
f = open("./datafeed/bcfeed_mtgoxUSD_1min.csv",'r')
#f = open("./datafeed/test_data.csv",'r')
d = f.readlines()
f.close()
if len(d) > max_length:
#truncate the dataset
d = d[max_length * -1:]
#load the backtest dataset
input = []
for row in d[1:]:
r = row.split(',')[1] #last price
t = row.split(',')[0] #time
input.append([int(float(t)),float(r)])
#print "done loading:", str(len(input)),"records."
#allocate uninitalized buffer(s)
input_len = numpy.uint32(len(input))
buf_size = len(input) * work_group_size * work_item_size * 4 #float32 is four bytes
print "#DEBUG# Buffer size: ",buf_size
if ocl_mb_wg_macd_pct != None:
ocl_mb_wg_macd_pct.release()
ocl_mb_wg_macd_pct = cl.Buffer(ctx, mf.WRITE_ONLY, size=buf_size)
print ocl_mb_wg_macd_pct.get_info(cl.mem_info.SIZE)
queue.flush()
return input
#configure the gene pool
g = genepool()
g = load_config_into_object(load_config_from_file("gene_def.json"),g)
#g.set_log("winners.txt")
print "Creating the trade engine"
te = trade_engine()
te.score_only = True
print "preprocessing the input data..."
#load the inital data
input = load()
te.classify_market(input)
wg_market_classification = [int(i[1] * 4) for i in te.market_class] #use the python based bct trade engine market classification
wg_input = [i[1] for i in input]
#process command line args
quartile = ''
bs = ''
verbose = False
print sys.argv
if len(sys.argv) >= 3:
# Convert the two arguments from strings into numbers
quartile = sys.argv[1]
bs = sys.argv[2]
if len(sys.argv) == 4:
if sys.argv[3] == 'v':
verbose = True
#which quartile group to test
while not (quartile in ['1','2','3','4']):
print "Which quartile group to test? (1,2,3,4):"
quartile = raw_input()
quartile = int(quartile)
#bootstrap the population with the winners available from the gene_pool server
while not(bs == 'y' or bs == 'n'):
print "Bootstrap from the gene_server? (y/n)"
bs = raw_input()
if bs == 'y':
bob_simulator = True
g.local_optima_trigger = 10
calibrate = 1
bootstrap_bobs = json.loads(server.get_bobs(quartile))
bootstrap_all = json.loads(server.get_all(quartile))
if (type(bootstrap_bobs) == type([])) and (type(bootstrap_all) == type([])):
g.seed()
#g.pool = []
g.insert_genedict_list(bootstrap_bobs)
g.insert_genedict_list(bootstrap_all)
g.reset_scores()
else: #if no BOBS or high scores..seed with a new population
print "no BOBs or high scores available...seeding new pool."
g.seed()
print "%s BOBs loaded"%len(bootstrap_bobs)
print "%s high scores loaded"%len(bootstrap_all)
print "Pool size: %s"%len(g.pool)
else:
bob_simulator = False
g.local_optima_trigger = 5
print "Seeding the initial population"
g.seed()
cycle_time = 60 * 1#time in seconds to test the entire population
min_cycle_time = 50
cycle_time_step = 1
test_count = 0
total_count = 0
max_score = -10000
max_score_id = -1
start_time = time.time()
print "Running the simulator"
while 1:
#periodicaly reload the data set
test_count += work_group_size * work_item_size
total_count += work_group_size * work_item_size
if load_throttle == 1:
time.sleep(0.35)
if test_count > g.pool_size:
test_count = 0
#benchmark the cycle speed
current_time = time.time()
elapsed_time = current_time - start_time
gps = total_count / (elapsed_time + 0.0001)
if calibrate == 1:
#print "Recalibrating pool size..."
suggested_size = int(gps * cycle_time)
cycle_time -= cycle_time_step
if cycle_time < min_cycle_time:
cycle_time = min_cycle_time
if (suggested_size - g.pool_size) > 1000:
g.pool_size += 100
else:
g.pool_size = suggested_size
print "%.2f"%gps,"G/S; ","%.2f"%((gps*len(input))/1000.0),"KS/S;"," Pool Size: ",g.pool_size," Total Processed: ",total_count, " Quartile: ",quartile
#load the latest trade data
print "Loading the lastest trade data..."
te = trade_engine()
te.score_only = True
input = load()
#preprocess input data
te.classify_market(input)
wg_market_classification = [int(i[1] * 4) for i in te.market_class] #use the python based bct trade engine market classification
wg_input = [i[1] for i in input]
if g.local_optima_reached:
print '#'*10, " Local optima reached...sending bob to the gene_server ", '#'*10
max_score = 0
test_count = 0
max_gene = g.get_by_id(max_score_id)
if max_gene != None:
print "--\tSubmit BOB for id:%s to server (%.2f)"%(str(max_gene['id']),max_gene['score'])
server.put_bob(json.dumps(max_gene),quartile)
else:
print "--\tNo BOB to submit"
if bob_simulator == True:
bootstrap_bobs = json.loads(server.get_bobs(quartile))
bootstrap_all = json.loads(server.get_all(quartile))
if (type(bootstrap_bobs) == type([])) and (type(bootstrap_all) == type([])):
g.seed()
g.pool = []
g.insert_genedict_list(bootstrap_bobs)
g.insert_genedict_list(bootstrap_all)
g.reset_scores()
print "BOBs loaded...",len(g.pool)
else: #if no BOBS or high scores..seed with a new population
print "no BOBs or high scores available...seeding new pool."
g.seed()
else:
g.seed()
#automaticaly cycle through the four quartiles
quartile += 1
if quartile > 4:
quartile = 1
if test_count > (g.pool_size * 10):
test_count = 0
print "Reset scores to force retest of winners..."
test_count = 0
max_score = 0 #knock the high score down to prevent blocking
#latest scoring data which may fall due to
#the latest price data
g.next_gen()
g.reset_scores()
#build the opencl workgroup
wg_id = []
wg_gene = []
wg_shares = []
wg_wll = []
wg_wls = []
wg_wls = []
wg_buy_wait = []
wg_markup = []
wg_stop_loss = []
wg_stop_age = []
wg_macd_buy_trip = []
wg_buy_wait_after_stop_loss = []
wg_quartile = []
#the following lists are only populated (elsewhere) when new data is loaded:
#wg_market_classification = [int(i[1] * 4) for i in te.market_class] #use the python based bct trade engine market classification
#wg_input = [i[1] for i in input]
print "Batch processing",work_group_size * work_item_size,"genes from a pool of",len(g.pool), " and an input len of ",len(wg_input)
for i in range(work_group_size * work_item_size):
ag = g.get_next()
wg_id.append(ag['id'])
wg_gene.append(ag['gene'])
#wg_shares.append(ag['shares'])
wg_wll.append(ag['wll'] + ag['wls'] + 2) #add the two together to make sure
#the macd moving windows dont get inverted
wg_wls.append(ag['wls'] + 1)
#wg_buy_wait.append(ag['buy_wait'])
#wg_markup.append(ag['markup'] + (te.commision * 3.0)) #+ 0.025
#wg_stop_loss.append(ag['stop_loss'])
#wg_stop_age.append(float(ag['stop_age']))
#wg_macd_buy_trip.append(ag['macd_buy_trip'] * -1.0)
#wg_buy_wait_after_stop_loss.append(ag['buy_wait_after_stop_loss'])
#wg_quartile.append(quartile)
print "Global Work Items: ",work_group_size * work_item_size
#build the memory buffers
#mb_wg_shares = numpy.array(wg_shares, dtype=numpy.float32)
mb_wg_wll = numpy.array(wg_wll, dtype=numpy.uint32)
mb_wg_wls = numpy.array(wg_wls, dtype=numpy.uint32)
#mb_wg_buy_wait = numpy.array(wg_shares, dtype=numpy.uint32)
#mb_wg_markup = numpy.array(wg_markup, dtype=numpy.float32)
#mb_wg_stop_loss = numpy.array(wg_stop_loss, dtype=numpy.float32)
#mb_wg_stop_age = numpy.array(wg_stop_age, dtype=numpy.float32)
#mb_wg_macd_buy_trip = numpy.array(wg_macd_buy_trip, dtype=numpy.float32)
#mb_wg_buy_wait_after_stop_loss = numpy.array(wg_buy_wait_after_stop_loss, dtype=numpy.uint32)
#mb_wg_quartile = numpy.array(wg_quartile, dtype=numpy.uint32)
#mb_wg_market_classification = numpy.array(wg_market_classification, dtype=numpy.uint32)
mb_wg_input = numpy.array(wg_input, dtype=numpy.float32)
#mb_wg_score = numpy.array(range(work_group_size), dtype=numpy.float32)
#mb_wg_orders = numpy.array(range(work_group_size * max_open_orders * order_array_size), dtype=numpy.float32)
#create OpenCL buffers
#mapped - makes sure the data is completly loaded before processing begins
#ocl_mb_wg_market_classification = cl.Buffer(ctx, mf.READ_ONLY | mf.ALLOC_HOST_PTR | mf.COPY_HOST_PTR, hostbuf=mb_wg_market_classification)
ocl_mb_wg_input = cl.Buffer(ctx, mf.READ_ONLY | mf.ALLOC_HOST_PTR | mf.COPY_HOST_PTR, hostbuf=mb_wg_input)
#ocl_mb_wg_orders = cl.Buffer(ctx, mf.READ_WRITE | mf.ALLOC_HOST_PTR | mf.COPY_HOST_PTR, hostbuf=mb_wg_orders)#mb_wg_orders.nbytes
#unmapped - can be transferred on demand
#ocl_mb_wg_quartile = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=mb_wg_quartile)
#ocl_mb_wg_score = cl.Buffer(ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=mb_wg_score)
#ocl_mb_wg_shares = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=mb_wg_shares)
ocl_mb_wg_wll = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=mb_wg_wll)
ocl_mb_wg_wls = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=mb_wg_wls)
#ocl_mb_wg_buy_wait = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=mb_wg_buy_wait)
#ocl_mb_wg_markup = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=mb_wg_markup)
#ocl_mb_wg_stop_loss = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=mb_wg_stop_loss)
#ocl_mb_wg_stop_age = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=mb_wg_stop_age)
#ocl_mb_wg_macd_buy_trip = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=mb_wg_macd_buy_trip)
#ocl_mb_wg_buy_wait_after_stop_loss = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=mb_wg_buy_wait_after_stop_loss)
#allocate uninitalized buffer(s)
#input_len = numpy.uint32(len(input))
#buf_size = len(input) * work_group_size * work_item_size * 4 #float32 is four bytes
#print "#DEBUG# Buffer size: ",buf_size
#ocl_mb_wg_macd_pct = cl.Buffer(ctx, mf.WRITE_ONLY, size=buf_size)
#print ocl_mb_wg_macd_pct.get_info(cl.mem_info.SIZE)
#queue.flush()
#debug - used to make sure the datasets are constant (when input reloading is disabled)
#m = hashlib.md5()
#m.update(str(mb_wg_input))
#m.update(str(mb_wg_market_classification))
#print m.hexdigest()
gkernel_args = """
kernel.set_arg(0,ocl_mb_wg_shares)
kernel.set_arg(1,ocl_mb_wg_wll)
kernel.set_arg(2,ocl_mb_wg_wls)
kernel.set_arg(3,ocl_mb_wg_buy_wait)
kernel.set_arg(4,ocl_mb_wg_markup)
kernel.set_arg(5,ocl_mb_wg_stop_loss)
kernel.set_arg(6,ocl_mb_wg_stop_age)
kernel.set_arg(7,ocl_mb_wg_macd_buy_trip)
kernel.set_arg(8,ocl_mb_wg_buy_wait_after_stop_loss)
kernel.set_arg(9,ocl_mb_wg_quartile)
kernel.set_arg(10,ocl_mb_wg_market_classification)
kernel.set_arg(11,ocl_mb_wg_input)
kernel.set_arg(12,ocl_mb_wg_score)
kernel.set_arg(13,ocl_mb_wg_orders)
kernel.set_arg(14,input_len)
"""
kernel.set_arg(0,ocl_mb_wg_macd_pct)
kernel.set_arg(1,ocl_mb_wg_wll)
kernel.set_arg(2,ocl_mb_wg_wls)
kernel.set_arg(3,ocl_mb_wg_input)
kernel.set_arg(4,input_len)
#execute the workgroup
print "executing the workgroup"
event = cl.enqueue_nd_range_kernel(queue,kernel,mb_wg_wll.shape,(work_item_size,))
event.wait()
print "execution complete"
#copy the result buffer (scores) back to the host
#scores = numpy.empty_like(mb_wg_score)
#cl.enqueue_read_buffer(queue, ocl_mb_wg_score, scores).wait()
#time.sleep(0.01)
#dumps the orders array - used for debug
if deep_logging_enable == True:
#write out the orders array
orders = numpy.empty_like(mb_wg_orders)
cl.enqueue_read_buffer(queue, ocl_mb_wg_orders, orders).wait()
f = open('/tmp/orders/' + str(total_count),'w' )
for i in range(0,len(orders),order_array_size):
if int(abs(orders[i])) != i/(max_open_orders * order_array_size): #dont save untouched memory
f.write(wg_id[i/(max_open_orders * order_array_size)] + ':\t\t' + str(i/(max_open_orders * order_array_size))+': '+ "\t".join(map(str,(orders[i],orders[i+1],orders[i+2],orders[i+3],orders[i+4],orders[i+5],orders[i+6],orders[i+7],orders[i+8],orders[i+9],orders[i+10],orders[i+11],orders[i+12],orders[i+13],orders[i+14],orders[i+15]))))
f.write('\n')
f.close()
#release all the buffers
#ocl_mb_wg_shares.release()
ocl_mb_wg_wll.release()
ocl_mb_wg_wls.release()
#ocl_mb_wg_buy_wait.release()
#ocl_mb_wg_markup.release()
#ocl_mb_wg_stop_loss.release()
#ocl_mb_wg_stop_age.release()
#ocl_mb_wg_macd_buy_trip.release()
#ocl_mb_wg_buy_wait_after_stop_loss.release()
#ocl_mb_wg_quartile.release()
#ocl_mb_wg_market_classification.release()
ocl_mb_wg_input.release()
#ocl_mb_wg_score.release()
#process the results
for i in range(work_group_size):
#score = float(scores[i])
score = -10000
#dump the scores buffer to a file - used for debugging
if deep_logging_enable == True:
#write out the scores
if score > 0.1 or 1:
f = open('/tmp/scores/' + str(wg_id[i]),'a' )
f.write(",".join(map(str,(time.ctime(),total_count,score, wg_gene[i], \
wg_shares[i], \
wg_wll[i], \
wg_wls[i], \
wg_buy_wait[i], \
wg_markup[i], \
wg_stop_loss[i], \
wg_stop_age[i], \
wg_macd_buy_trip[i], \
wg_buy_wait_after_stop_loss[i]
))))
f.write('\n')
f.close()
if verbose:
indicator = ""
if max_score <= score:
indicator = "<------------------"
print wg_id[i],wg_gene[i],"\t".join(["%.5f"%max_score,"%.5f"%score]),indicator
#submit the score to the gene pool
g.set_score(wg_id[i],score)
#if a new high score is found (or revisited) submit the gene to
#the server
if score > max_score and score > -1000.00:
print "--\tSubmit high score for id:%s to server (%.2f)"%(str(wg_id[i]),score)
max_score = score
max_score_id = wg_id[i]
max_gene = g.get_by_id(max_score_id)
if max_gene != None:
server.put(json.dumps(max_gene),quartile)
else:
print "MAX_GENE is None!!"
#print "MAX_SCORE:",max_score,"MAX_SCORE_ID:",max_score_id,"OBJECT_TYPE:",type(g.get_by_id(max_score_id))