forked from trekhleb/javascript-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfloydWarshall.js
72 lines (65 loc) · 2.93 KB
/
floydWarshall.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/**
* @param {Graph} graph
* @return {{distances: number[][], nextVertices: GraphVertex[][]}}
*/
export default function floydWarshall(graph) {
// Get all graph vertices.
const vertices = graph.getAllVertices();
// Init previous vertices matrix with nulls meaning that there are no
// previous vertices exist that will give us shortest path.
const nextVertices = Array(vertices.length).fill(null).map(() => {
return Array(vertices.length).fill(null);
});
// Init distances matrix with Infinities meaning there are no paths
// between vertices exist so far.
const distances = Array(vertices.length).fill(null).map(() => {
return Array(vertices.length).fill(Infinity);
});
// Init distance matrix with the distance we already now (from existing edges).
// And also init previous vertices from the edges.
vertices.forEach((startVertex, startIndex) => {
vertices.forEach((endVertex, endIndex) => {
if (startVertex === endVertex) {
// Distance to the vertex itself is 0.
distances[startIndex][endIndex] = 0;
} else {
// Find edge between the start and end vertices.
const edge = graph.findEdge(startVertex, endVertex);
if (edge) {
// There is an edge from vertex with startIndex to vertex with endIndex.
// Save distance and previous vertex.
distances[startIndex][endIndex] = edge.weight;
nextVertices[startIndex][endIndex] = startVertex;
} else {
distances[startIndex][endIndex] = Infinity;
}
}
});
});
// Now let's go to the core of the algorithm.
// Let's all pair of vertices (from start to end ones) and try to check if there
// is a shorter path exists between them via middle vertex. Middle vertex may also
// be one of the graph vertices. As you may see now we're going to have three
// loops over all graph vertices: for start, end and middle vertices.
vertices.forEach((middleVertex, middleIndex) => {
// Path starts from startVertex with startIndex.
vertices.forEach((startVertex, startIndex) => {
// Path ends to endVertex with endIndex.
vertices.forEach((endVertex, endIndex) => {
// Compare existing distance from startVertex to endVertex, with distance
// from startVertex to endVertex but via middleVertex.
// Save the shortest distance and previous vertex that allows
// us to have this shortest distance.
const distViaMiddle = distances[startIndex][middleIndex] + distances[middleIndex][endIndex];
if (distances[startIndex][endIndex] > distViaMiddle) {
// We've found a shortest pass via middle vertex.
distances[startIndex][endIndex] = distViaMiddle;
nextVertices[startIndex][endIndex] = middleVertex;
}
});
});
});
// Shortest distance from x to y: distance[x][y].
// Next vertex after x one in path from x to y: nextVertices[x][y].
return { distances, nextVertices };
}