-
Notifications
You must be signed in to change notification settings - Fork 0
/
csp.py
1428 lines (1190 loc) · 54.1 KB
/
csp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""CSP (Constraint Satisfaction Problems) problems and solvers. (Chapter 6)"""
import itertools
import random
import re
import string
from collections import defaultdict, Counter
from functools import reduce
from operator import eq, neg
from sortedcontainers import SortedSet
import search
from utils import argmin_random_tie, count, first, extend
class CSP(search.Problem):
"""This class describes finite-domain Constraint Satisfaction Problems.
A CSP is specified by the following inputs:
variables A list of variables; each is atomic (e.g. int or string).
domains A dict of {var:[possible_value, ...]} entries.
neighbors A dict of {var:[var,...]} that for each variable lists
the other variables that participate in constraints.
constraints A function f(A, a, B, b) that returns true if neighbors
A, B satisfy the constraint when they have values A=a, B=b
In the textbook and in most mathematical definitions, the
constraints are specified as explicit pairs of allowable values,
but the formulation here is easier to express and more compact for
most cases (for example, the n-Queens problem can be represented
in O(n) space using this notation, instead of O(n^4) for the
explicit representation). In terms of describing the CSP as a
problem, that's all there is.
However, the class also supports data structures and methods that help you
solve CSPs by calling a search function on the CSP. Methods and slots are
as follows, where the argument 'a' represents an assignment, which is a
dict of {var:val} entries:
assign(var, val, a) Assign a[var] = val; do other bookkeeping
unassign(var, a) Do del a[var], plus other bookkeeping
nconflicts(var, val, a) Return the number of other variables that
conflict with var=val
curr_domains[var] Slot: remaining consistent values for var
Used by constraint propagation routines.
The following methods are used only by graph_search and tree_search:
actions(state) Return a list of actions
result(state, action) Return a successor of state
goal_test(state) Return true if all constraints satisfied
The following are just for debugging purposes:
nassigns Slot: tracks the number of assignments made
display(a) Print a human-readable representation
"""
def __init__(self, variables, domains, neighbors, constraints):
"""Construct a CSP problem. If variables is empty, it becomes domains.keys()."""
super().__init__(())
variables = variables or list(domains.keys())
self.variables = variables
self.domains = domains
self.neighbors = neighbors
self.constraints = constraints
self.curr_domains = None
self.nassigns = 0
def assign(self, var, val, assignment):
"""Add {var: val} to assignment; Discard the old value if any."""
assignment[var] = val
self.nassigns += 1
def unassign(self, var, assignment):
"""Remove {var: val} from assignment.
DO NOT call this if you are changing a variable to a new value;
just call assign for that."""
if var in assignment:
del assignment[var]
def nconflicts(self, var, val, assignment):
"""Return the number of conflicts var=val has with other variables."""
# Subclasses may implement this more efficiently
def conflict(var2):
return var2 in assignment and not self.constraints(var, val, var2, assignment[var2])
return count(conflict(v) for v in self.neighbors[var])
def display(self, assignment):
"""Show a human-readable representation of the CSP."""
# Subclasses can print in a prettier way, or display with a GUI
print(assignment)
# These methods are for the tree and graph-search interface:
def actions(self, state):
"""Return a list of applicable actions: non conflicting
assignments to an unassigned variable."""
if len(state) == len(self.variables):
return []
else:
assignment = dict(state)
var = first([v for v in self.variables if v not in assignment])
return [(var, val) for val in self.domains[var]
if self.nconflicts(var, val, assignment) == 0]
def result(self, state, action):
"""Perform an action and return the new state."""
(var, val) = action
return state + ((var, val),)
def goal_test(self, state):
"""The goal is to assign all variables, with all constraints satisfied."""
assignment = dict(state)
return (len(assignment) == len(self.variables)
and all(self.nconflicts(variables, assignment[variables], assignment) == 0
for variables in self.variables))
# These are for constraint propagation
def support_pruning(self):
"""Make sure we can prune values from domains. (We want to pay
for this only if we use it.)"""
if self.curr_domains is None:
self.curr_domains = {v: list(self.domains[v]) for v in self.variables}
def suppose(self, var, value):
"""Start accumulating inferences from assuming var=value."""
self.support_pruning()
removals = [(var, a) for a in self.curr_domains[var] if a != value]
self.curr_domains[var] = [value]
return removals
def prune(self, var, value, removals):
"""Rule out var=value."""
self.curr_domains[var].remove(value)
if removals is not None:
removals.append((var, value))
def choices(self, var):
"""Return all values for var that aren't currently ruled out."""
return (self.curr_domains or self.domains)[var]
def infer_assignment(self):
"""Return the partial assignment implied by the current inferences."""
self.support_pruning()
return {v: self.curr_domains[v][0]
for v in self.variables if 1 == len(self.curr_domains[v])}
def restore(self, removals):
"""Undo a supposition and all inferences from it."""
for B, b in removals:
self.curr_domains[B].append(b)
# This is for min_conflicts search
def conflicted_vars(self, current):
"""Return a list of variables in current assignment that are in conflict"""
return [var for var in self.variables
if self.nconflicts(var, current[var], current) > 0]
# ______________________________________________________________________________
# Constraint Propagation with AC3
def no_arc_heuristic(csp, queue):
return queue
def dom_j_up(csp, queue):
return SortedSet(queue, key=lambda t: neg(len(csp.curr_domains[t[1]])))
def AC3(csp, queue=None, removals=None, arc_heuristic=dom_j_up):
"""[Figure 6.3]"""
if queue is None:
queue = {(Xi, Xk) for Xi in csp.variables for Xk in csp.neighbors[Xi]}
csp.support_pruning()
queue = arc_heuristic(csp, queue)
checks = 0
while queue:
(Xi, Xj) = queue.pop()
revised, checks = revise(csp, Xi, Xj, removals, checks)
if revised:
if not csp.curr_domains[Xi]:
return False, checks # CSP is inconsistent
for Xk in csp.neighbors[Xi]:
if Xk != Xj:
queue.add((Xk, Xi))
return True, checks # CSP is satisfiable
def revise(csp, Xi, Xj, removals, checks=0):
"""Return true if we remove a value."""
revised = False
for x in csp.curr_domains[Xi][:]:
# If Xi=x conflicts with Xj=y for every possible y, eliminate Xi=x
# if all(not csp.constraints(Xi, x, Xj, y) for y in csp.curr_domains[Xj]):
conflict = True
for y in csp.curr_domains[Xj]:
if csp.constraints(Xi, x, Xj, y):
conflict = False
checks += 1
if not conflict:
break
if conflict:
csp.prune(Xi, x, removals)
revised = True
return revised, checks
# Constraint Propagation with AC3b: an improved version
# of AC3 with double-support domain-heuristic
def AC3b(csp, queue=None, removals=None, arc_heuristic=dom_j_up):
if queue is None:
queue = {(Xi, Xk) for Xi in csp.variables for Xk in csp.neighbors[Xi]}
csp.support_pruning()
queue = arc_heuristic(csp, queue)
checks = 0
while queue:
(Xi, Xj) = queue.pop()
# Si_p values are all known to be supported by Xj
# Sj_p values are all known to be supported by Xi
# Dj - Sj_p = Sj_u values are unknown, as yet, to be supported by Xi
Si_p, Sj_p, Sj_u, checks = partition(csp, Xi, Xj, checks)
if not Si_p:
return False, checks # CSP is inconsistent
revised = False
for x in set(csp.curr_domains[Xi]) - Si_p:
csp.prune(Xi, x, removals)
revised = True
if revised:
for Xk in csp.neighbors[Xi]:
if Xk != Xj:
queue.add((Xk, Xi))
if (Xj, Xi) in queue:
if isinstance(queue, set):
# or queue -= {(Xj, Xi)} or queue.remove((Xj, Xi))
queue.difference_update({(Xj, Xi)})
else:
queue.difference_update((Xj, Xi))
# the elements in D_j which are supported by Xi are given by the union of Sj_p with the set of those
# elements of Sj_u which further processing will show to be supported by some vi_p in Si_p
for vj_p in Sj_u:
for vi_p in Si_p:
conflict = True
if csp.constraints(Xj, vj_p, Xi, vi_p):
conflict = False
Sj_p.add(vj_p)
checks += 1
if not conflict:
break
revised = False
for x in set(csp.curr_domains[Xj]) - Sj_p:
csp.prune(Xj, x, removals)
revised = True
if revised:
for Xk in csp.neighbors[Xj]:
if Xk != Xi:
queue.add((Xk, Xj))
return True, checks # CSP is satisfiable
def partition(csp, Xi, Xj, checks=0):
Si_p = set()
Sj_p = set()
Sj_u = set(csp.curr_domains[Xj])
for vi_u in csp.curr_domains[Xi]:
conflict = True
# now, in order to establish support for a value vi_u in Di it seems better to try to find a support among
# the values in Sj_u first, because for each vj_u in Sj_u the check (vi_u, vj_u) is a double-support check
# and it is just as likely that any vj_u in Sj_u supports vi_u than it is that any vj_p in Sj_p does...
for vj_u in Sj_u - Sj_p:
# double-support check
if csp.constraints(Xi, vi_u, Xj, vj_u):
conflict = False
Si_p.add(vi_u)
Sj_p.add(vj_u)
checks += 1
if not conflict:
break
# ... and only if no support can be found among the elements in Sj_u, should the elements vj_p in Sj_p be used
# for single-support checks (vi_u, vj_p)
if conflict:
for vj_p in Sj_p:
# single-support check
if csp.constraints(Xi, vi_u, Xj, vj_p):
conflict = False
Si_p.add(vi_u)
checks += 1
if not conflict:
break
return Si_p, Sj_p, Sj_u - Sj_p, checks
# Constraint Propagation with AC4
def AC4(csp, queue=None, removals=None, arc_heuristic=dom_j_up):
if queue is None:
queue = {(Xi, Xk) for Xi in csp.variables for Xk in csp.neighbors[Xi]}
csp.support_pruning()
queue = arc_heuristic(csp, queue)
support_counter = Counter()
variable_value_pairs_supported = defaultdict(set)
unsupported_variable_value_pairs = []
checks = 0
# construction and initialization of support sets
while queue:
(Xi, Xj) = queue.pop()
revised = False
for x in csp.curr_domains[Xi][:]:
for y in csp.curr_domains[Xj]:
if csp.constraints(Xi, x, Xj, y):
support_counter[(Xi, x, Xj)] += 1
variable_value_pairs_supported[(Xj, y)].add((Xi, x))
checks += 1
if support_counter[(Xi, x, Xj)] == 0:
csp.prune(Xi, x, removals)
revised = True
unsupported_variable_value_pairs.append((Xi, x))
if revised:
if not csp.curr_domains[Xi]:
return False, checks # CSP is inconsistent
# propagation of removed values
while unsupported_variable_value_pairs:
Xj, y = unsupported_variable_value_pairs.pop()
for Xi, x in variable_value_pairs_supported[(Xj, y)]:
revised = False
if x in csp.curr_domains[Xi][:]:
support_counter[(Xi, x, Xj)] -= 1
if support_counter[(Xi, x, Xj)] == 0:
csp.prune(Xi, x, removals)
revised = True
unsupported_variable_value_pairs.append((Xi, x))
if revised:
if not csp.curr_domains[Xi]:
return False, checks # CSP is inconsistent
return True, checks # CSP is satisfiable
# ______________________________________________________________________________
# CSP Backtracking Search
# Variable ordering
def first_unassigned_variable(assignment, csp):
"""The default variable order."""
return first([var for var in csp.variables if var not in assignment])
def mrv(assignment, csp):
"""Minimum-remaining-values heuristic."""
return argmin_random_tie([v for v in csp.variables if v not in assignment],
key=lambda var: num_legal_values(csp, var, assignment))
def num_legal_values(csp, var, assignment):
if csp.curr_domains:
return len(csp.curr_domains[var])
else:
return count(csp.nconflicts(var, val, assignment) == 0 for val in csp.domains[var])
# Value ordering
def unordered_domain_values(var, assignment, csp):
"""The default value order."""
return csp.choices(var)
def lcv(var, assignment, csp):
"""Least-constraining-values heuristic."""
return sorted(csp.choices(var), key=lambda val: csp.nconflicts(var, val, assignment))
# Inference
def no_inference(csp, var, value, assignment, removals):
return True
def forward_checking(csp, var, value, assignment, removals):
"""Prune neighbor values inconsistent with var=value."""
csp.support_pruning()
for B in csp.neighbors[var]:
if B not in assignment:
for b in csp.curr_domains[B][:]:
if not csp.constraints(var, value, B, b):
csp.prune(B, b, removals)
if not csp.curr_domains[B]:
return False
return True
def mac(csp, var, value, assignment, removals, constraint_propagation=AC3b):
"""Maintain arc consistency."""
return constraint_propagation(csp, {(X, var) for X in csp.neighbors[var]}, removals)
# The search, proper
def backtracking_search(csp, select_unassigned_variable=first_unassigned_variable,
order_domain_values=unordered_domain_values, inference=no_inference):
"""[Figure 6.5]"""
def backtrack(assignment):
if len(assignment) == len(csp.variables):
return assignment
var = select_unassigned_variable(assignment, csp)
for value in order_domain_values(var, assignment, csp):
if 0 == csp.nconflicts(var, value, assignment):
csp.assign(var, value, assignment)
removals = csp.suppose(var, value)
if inference(csp, var, value, assignment, removals):
result = backtrack(assignment)
if result is not None:
return result
csp.restore(removals)
csp.unassign(var, assignment)
return None
result = backtrack({})
assert result is None or csp.goal_test(result)
return result
# ______________________________________________________________________________
# Min-conflicts Hill Climbing search for CSPs
def min_conflicts(csp, max_steps=100000):
"""Solve a CSP by stochastic Hill Climbing on the number of conflicts."""
# Generate a complete assignment for all variables (probably with conflicts)
csp.current = current = {}
for var in csp.variables:
val = min_conflicts_value(csp, var, current)
csp.assign(var, val, current)
# Now repeatedly choose a random conflicted variable and change it
for i in range(max_steps):
conflicted = csp.conflicted_vars(current)
if not conflicted:
return current
var = random.choice(conflicted)
val = min_conflicts_value(csp, var, current)
csp.assign(var, val, current)
return None
def min_conflicts_value(csp, var, current):
"""Return the value that will give var the least number of conflicts.
If there is a tie, choose at random."""
return argmin_random_tie(csp.domains[var], key=lambda val: csp.nconflicts(var, val, current))
# ______________________________________________________________________________
def tree_csp_solver(csp):
"""[Figure 6.11]"""
assignment = {}
root = csp.variables[0]
X, parent = topological_sort(csp, root)
csp.support_pruning()
for Xj in reversed(X[1:]):
if not make_arc_consistent(parent[Xj], Xj, csp):
return None
assignment[root] = csp.curr_domains[root][0]
for Xi in X[1:]:
assignment[Xi] = assign_value(parent[Xi], Xi, csp, assignment)
if not assignment[Xi]:
return None
return assignment
def topological_sort(X, root):
"""Returns the topological sort of X starting from the root.
Input:
X is a list with the nodes of the graph
N is the dictionary with the neighbors of each node
root denotes the root of the graph.
Output:
stack is a list with the nodes topologically sorted
parents is a dictionary pointing to each node's parent
Other:
visited shows the state (visited - not visited) of nodes
"""
neighbors = X.neighbors
visited = defaultdict(lambda: False)
stack = []
parents = {}
build_topological(root, None, neighbors, visited, stack, parents)
return stack, parents
def build_topological(node, parent, neighbors, visited, stack, parents):
"""Build the topological sort and the parents of each node in the graph."""
visited[node] = True
for n in neighbors[node]:
if not visited[n]:
build_topological(n, node, neighbors, visited, stack, parents)
parents[node] = parent
stack.insert(0, node)
def make_arc_consistent(Xj, Xk, csp):
"""Make arc between parent (Xj) and child (Xk) consistent under the csp's constraints,
by removing the possible values of Xj that cause inconsistencies."""
# csp.curr_domains[Xj] = []
for val1 in csp.domains[Xj]:
keep = False # Keep or remove val1
for val2 in csp.domains[Xk]:
if csp.constraints(Xj, val1, Xk, val2):
# Found a consistent assignment for val1, keep it
keep = True
break
if not keep:
# Remove val1
csp.prune(Xj, val1, None)
return csp.curr_domains[Xj]
def assign_value(Xj, Xk, csp, assignment):
"""Assign a value to Xk given Xj's (Xk's parent) assignment.
Return the first value that satisfies the constraints."""
parent_assignment = assignment[Xj]
for val in csp.curr_domains[Xk]:
if csp.constraints(Xj, parent_assignment, Xk, val):
return val
# No consistent assignment available
return None
# ______________________________________________________________________________
# Map Coloring CSP Problems
class UniversalDict:
"""A universal dict maps any key to the same value. We use it here
as the domains dict for CSPs in which all variables have the same domain.
>>> d = UniversalDict(42)
>>> d['life']
42
"""
def __init__(self, value): self.value = value
def __getitem__(self, key): return self.value
def __repr__(self): return '{{Any: {0!r}}}'.format(self.value)
def different_values_constraint(A, a, B, b):
"""A constraint saying two neighboring variables must differ in value."""
return a != b
def MapColoringCSP(colors, neighbors):
"""Make a CSP for the problem of coloring a map with different colors
for any two adjacent regions. Arguments are a list of colors, and a
dict of {region: [neighbor,...]} entries. This dict may also be
specified as a string of the form defined by parse_neighbors."""
if isinstance(neighbors, str):
neighbors = parse_neighbors(neighbors)
return CSP(list(neighbors.keys()), UniversalDict(colors), neighbors, different_values_constraint)
def parse_neighbors(neighbors):
"""Convert a string of the form 'X: Y Z; Y: Z' into a dict mapping
regions to neighbors. The syntax is a region name followed by a ':'
followed by zero or more region names, followed by ';', repeated for
each region name. If you say 'X: Y' you don't need 'Y: X'.
>>> parse_neighbors('X: Y Z; Y: Z') == {'Y': ['X', 'Z'], 'X': ['Y', 'Z'], 'Z': ['X', 'Y']}
True
"""
dic = defaultdict(list)
specs = [spec.split(':') for spec in neighbors.split(';')]
for (A, Aneighbors) in specs:
A = A.strip()
for B in Aneighbors.split():
dic[A].append(B)
dic[B].append(A)
return dic
australia_csp = MapColoringCSP(list('RGB'), """SA: WA NT Q NSW V; NT: WA Q; NSW: Q V; T: """)
usa_csp = MapColoringCSP(list('RGBY'),
"""WA: OR ID; OR: ID NV CA; CA: NV AZ; NV: ID UT AZ; ID: MT WY UT;
UT: WY CO AZ; MT: ND SD WY; WY: SD NE CO; CO: NE KA OK NM; NM: OK TX AZ;
ND: MN SD; SD: MN IA NE; NE: IA MO KA; KA: MO OK; OK: MO AR TX;
TX: AR LA; MN: WI IA; IA: WI IL MO; MO: IL KY TN AR; AR: MS TN LA;
LA: MS; WI: MI IL; IL: IN KY; IN: OH KY; MS: TN AL; AL: TN GA FL;
MI: OH IN; OH: PA WV KY; KY: WV VA TN; TN: VA NC GA; GA: NC SC FL;
PA: NY NJ DE MD WV; WV: MD VA; VA: MD DC NC; NC: SC; NY: VT MA CT NJ;
NJ: DE; DE: MD; MD: DC; VT: NH MA; MA: NH RI CT; CT: RI; ME: NH;
HI: ; AK: """)
france_csp = MapColoringCSP(list('RGBY'),
"""AL: LO FC; AQ: MP LI PC; AU: LI CE BO RA LR MP; BO: CE IF CA FC RA
AU; BR: NB PL; CA: IF PI LO FC BO; CE: PL NB NH IF BO AU LI PC; FC: BO
CA LO AL RA; IF: NH PI CA BO CE; LI: PC CE AU MP AQ; LO: CA AL FC; LR:
MP AU RA PA; MP: AQ LI AU LR; NB: NH CE PL BR; NH: PI IF CE NB; NO:
PI; PA: LR RA; PC: PL CE LI AQ; PI: NH NO CA IF; PL: BR NB CE PC; RA:
AU BO FC PA LR""")
# ______________________________________________________________________________
# n-Queens Problem
def queen_constraint(A, a, B, b):
"""Constraint is satisfied (true) if A, B are really the same variable,
or if they are not in the same row, down diagonal, or up diagonal."""
return A == B or (a != b and A + a != B + b and A - a != B - b)
class NQueensCSP(CSP):
"""
Make a CSP for the nQueens problem for search with min_conflicts.
Suitable for large n, it uses only data structures of size O(n).
Think of placing queens one per column, from left to right.
That means position (x, y) represents (var, val) in the CSP.
The main structures are three arrays to count queens that could conflict:
rows[i] Number of queens in the ith row (i.e. val == i)
downs[i] Number of queens in the \ diagonal
such that their (x, y) coordinates sum to i
ups[i] Number of queens in the / diagonal
such that their (x, y) coordinates have x-y+n-1 = i
We increment/decrement these counts each time a queen is placed/moved from
a row/diagonal. So moving is O(1), as is nconflicts. But choosing
a variable, and a best value for the variable, are each O(n).
If you want, you can keep track of conflicted variables, then variable
selection will also be O(1).
>>> len(backtracking_search(NQueensCSP(8)))
8
"""
def __init__(self, n):
"""Initialize data structures for n Queens."""
CSP.__init__(self, list(range(n)), UniversalDict(list(range(n))),
UniversalDict(list(range(n))), queen_constraint)
self.rows = [0] * n
self.ups = [0] * (2 * n - 1)
self.downs = [0] * (2 * n - 1)
def nconflicts(self, var, val, assignment):
"""The number of conflicts, as recorded with each assignment.
Count conflicts in row and in up, down diagonals. If there
is a queen there, it can't conflict with itself, so subtract 3."""
n = len(self.variables)
c = self.rows[val] + self.downs[var + val] + self.ups[var - val + n - 1]
if assignment.get(var, None) == val:
c -= 3
return c
def assign(self, var, val, assignment):
"""Assign var, and keep track of conflicts."""
old_val = assignment.get(var, None)
if val != old_val:
if old_val is not None: # Remove old val if there was one
self.record_conflict(assignment, var, old_val, -1)
self.record_conflict(assignment, var, val, +1)
CSP.assign(self, var, val, assignment)
def unassign(self, var, assignment):
"""Remove var from assignment (if it is there) and track conflicts."""
if var in assignment:
self.record_conflict(assignment, var, assignment[var], -1)
CSP.unassign(self, var, assignment)
def record_conflict(self, assignment, var, val, delta):
"""Record conflicts caused by addition or deletion of a Queen."""
n = len(self.variables)
self.rows[val] += delta
self.downs[var + val] += delta
self.ups[var - val + n - 1] += delta
def display(self, assignment):
"""Print the queens and the nconflicts values (for debugging)."""
n = len(self.variables)
for val in range(n):
for var in range(n):
if assignment.get(var, '') == val:
ch = 'Q'
elif (var + val) % 2 == 0:
ch = '.'
else:
ch = '-'
print(ch, end=' ')
print(' ', end=' ')
for var in range(n):
if assignment.get(var, '') == val:
ch = '*'
else:
ch = ' '
print(str(self.nconflicts(var, val, assignment)) + ch, end=' ')
print()
# ______________________________________________________________________________
# Sudoku
def flatten(seqs):
return sum(seqs, [])
easy1 = '..3.2.6..9..3.5..1..18.64....81.29..7.......8..67.82....26.95..8..2.3..9..5.1.3..'
harder1 = '4173698.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......'
_R3 = list(range(3))
_CELL = itertools.count().__next__
_BGRID = [[[[_CELL() for x in _R3] for y in _R3] for bx in _R3] for by in _R3]
_BOXES = flatten([list(map(flatten, brow)) for brow in _BGRID])
_ROWS = flatten([list(map(flatten, zip(*brow))) for brow in _BGRID])
_COLS = list(zip(*_ROWS))
_NEIGHBORS = {v: set() for v in flatten(_ROWS)}
for unit in map(set, _BOXES + _ROWS + _COLS):
for v in unit:
_NEIGHBORS[v].update(unit - {v})
class Sudoku(CSP):
"""
A Sudoku problem.
The box grid is a 3x3 array of boxes, each a 3x3 array of cells.
Each cell holds a digit in 1..9. In each box, all digits are
different; the same for each row and column as a 9x9 grid.
>>> e = Sudoku(easy1)
>>> e.display(e.infer_assignment())
. . 3 | . 2 . | 6 . .
9 . . | 3 . 5 | . . 1
. . 1 | 8 . 6 | 4 . .
------+-------+------
. . 8 | 1 . 2 | 9 . .
7 . . | . . . | . . 8
. . 6 | 7 . 8 | 2 . .
------+-------+------
. . 2 | 6 . 9 | 5 . .
8 . . | 2 . 3 | . . 9
. . 5 | . 1 . | 3 . .
>>> AC3(e) # doctest: +ELLIPSIS
(True, ...)
>>> e.display(e.infer_assignment())
4 8 3 | 9 2 1 | 6 5 7
9 6 7 | 3 4 5 | 8 2 1
2 5 1 | 8 7 6 | 4 9 3
------+-------+------
5 4 8 | 1 3 2 | 9 7 6
7 2 9 | 5 6 4 | 1 3 8
1 3 6 | 7 9 8 | 2 4 5
------+-------+------
3 7 2 | 6 8 9 | 5 1 4
8 1 4 | 2 5 3 | 7 6 9
6 9 5 | 4 1 7 | 3 8 2
>>> h = Sudoku(harder1)
>>> backtracking_search(h, select_unassigned_variable=mrv, inference=forward_checking) is not None
True
"""
R3 = _R3
Cell = _CELL
bgrid = _BGRID
boxes = _BOXES
rows = _ROWS
cols = _COLS
neighbors = _NEIGHBORS
def __init__(self, grid):
"""Build a Sudoku problem from a string representing the grid:
the digits 1-9 denote a filled cell, '.' or '0' an empty one;
other characters are ignored."""
squares = iter(re.findall(r'\d|\.', grid))
domains = {var: [ch] if ch in '123456789' else '123456789'
for var, ch in zip(flatten(self.rows), squares)}
for _ in squares:
raise ValueError("Not a Sudoku grid", grid) # Too many squares
CSP.__init__(self, None, domains, self.neighbors, different_values_constraint)
def display(self, assignment):
def show_box(box): return [' '.join(map(show_cell, row)) for row in box]
def show_cell(cell): return str(assignment.get(cell, '.'))
def abut(lines1, lines2): return list(
map(' | '.join, list(zip(lines1, lines2))))
print('\n------+-------+------\n'.join(
'\n'.join(reduce(
abut, map(show_box, brow))) for brow in self.bgrid))
# ______________________________________________________________________________
# The Zebra Puzzle
def Zebra():
"""Return an instance of the Zebra Puzzle."""
Colors = 'Red Yellow Blue Green Ivory'.split()
Pets = 'Dog Fox Snails Horse Zebra'.split()
Drinks = 'OJ Tea Coffee Milk Water'.split()
Countries = 'Englishman Spaniard Norwegian Ukranian Japanese'.split()
Smokes = 'Kools Chesterfields Winston LuckyStrike Parliaments'.split()
variables = Colors + Pets + Drinks + Countries + Smokes
domains = {}
for var in variables:
domains[var] = list(range(1, 6))
domains['Norwegian'] = [1]
domains['Milk'] = [3]
neighbors = parse_neighbors("""Englishman: Red;
Spaniard: Dog; Kools: Yellow; Chesterfields: Fox;
Norwegian: Blue; Winston: Snails; LuckyStrike: OJ;
Ukranian: Tea; Japanese: Parliaments; Kools: Horse;
Coffee: Green; Green: Ivory""")
for type in [Colors, Pets, Drinks, Countries, Smokes]:
for A in type:
for B in type:
if A != B:
if B not in neighbors[A]:
neighbors[A].append(B)
if A not in neighbors[B]:
neighbors[B].append(A)
def zebra_constraint(A, a, B, b, recurse=0):
same = (a == b)
next_to = abs(a - b) == 1
if A == 'Englishman' and B == 'Red':
return same
if A == 'Spaniard' and B == 'Dog':
return same
if A == 'Chesterfields' and B == 'Fox':
return next_to
if A == 'Norwegian' and B == 'Blue':
return next_to
if A == 'Kools' and B == 'Yellow':
return same
if A == 'Winston' and B == 'Snails':
return same
if A == 'LuckyStrike' and B == 'OJ':
return same
if A == 'Ukranian' and B == 'Tea':
return same
if A == 'Japanese' and B == 'Parliaments':
return same
if A == 'Kools' and B == 'Horse':
return next_to
if A == 'Coffee' and B == 'Green':
return same
if A == 'Green' and B == 'Ivory':
return a - 1 == b
if recurse == 0:
return zebra_constraint(B, b, A, a, 1)
if ((A in Colors and B in Colors) or
(A in Pets and B in Pets) or
(A in Drinks and B in Drinks) or
(A in Countries and B in Countries) or
(A in Smokes and B in Smokes)):
return not same
raise Exception('error')
return CSP(variables, domains, neighbors, zebra_constraint)
def solve_zebra(algorithm=min_conflicts, **args):
z = Zebra()
ans = algorithm(z, **args)
for h in range(1, 6):
print('House', h, end=' ')
for (var, val) in ans.items():
if val == h:
print(var, end=' ')
print()
return ans['Zebra'], ans['Water'], z.nassigns, ans
# ______________________________________________________________________________
# n-ary Constraint Satisfaction Problem
class NaryCSP:
"""
A nary-CSP consists of:
domains : a dictionary that maps each variable to its domain
constraints : a list of constraints
variables : a set of variables
var_to_const: a variable to set of constraints dictionary
"""
def __init__(self, domains, constraints):
"""Domains is a variable:domain dictionary
constraints is a list of constraints
"""
self.variables = set(domains)
self.domains = domains
self.constraints = constraints
self.var_to_const = {var: set() for var in self.variables}
for con in constraints:
for var in con.scope:
self.var_to_const[var].add(con)
def __str__(self):
"""String representation of CSP"""
return str(self.domains)
def display(self, assignment=None):
"""More detailed string representation of CSP"""
if assignment is None:
assignment = {}
print(assignment)
def consistent(self, assignment):
"""assignment is a variable:value dictionary
returns True if all of the constraints that can be evaluated
evaluate to True given assignment.
"""
return all(con.holds(assignment)
for con in self.constraints
if all(v in assignment for v in con.scope))
class Constraint:
"""
A Constraint consists of:
scope : a tuple of variables
condition: a function that can applied to a tuple of values
for the variables.
"""
def __init__(self, scope, condition):
self.scope = scope
self.condition = condition
def __repr__(self):
return self.condition.__name__ + str(self.scope)
def holds(self, assignment):
"""Returns the value of Constraint con evaluated in assignment.
precondition: all variables are assigned in assignment
"""
return self.condition(*tuple(assignment[v] for v in self.scope))
def all_diff_constraint(*values):
"""Returns True if all values are different, False otherwise"""
return len(values) is len(set(values))
def is_word_constraint(words):
"""Returns True if the letters concatenated form a word in words, False otherwise"""
def isw(*letters):
return "".join(letters) in words
return isw
def meet_at_constraint(p1, p2):
"""Returns a function that is True when the words meet at the positions (p1, p2), False otherwise"""
def meets(w1, w2):
return w1[p1] == w2[p2]
meets.__name__ = "meet_at(" + str(p1) + ',' + str(p2) + ')'
return meets
def adjacent_constraint(x, y):
"""Returns True if x and y are adjacent numbers, False otherwise"""
return abs(x - y) == 1
def sum_constraint(n):
"""Returns a function that is True when the the sum of all values is n, False otherwise"""
def sumv(*values):
return sum(values) is n
sumv.__name__ = str(n) + "==sum"
return sumv
def is_constraint(val):
"""Returns a function that is True when x is equal to val, False otherwise"""
def isv(x):
return val == x
isv.__name__ = str(val) + "=="