-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
326 lines (274 loc) · 14.3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import itertools
from typing import List
from tqdm import tqdm
import math
import toml
from dataset import AudioToTextDataLayer
from helpers import process_evaluation_batch, process_evaluation_epoch, add_ctc_labels, AmpOptimizations, print_dict, model_multi_gpu, __ctc_decoder_predictions_tensor
from model import AudioPreprocessing, GreedyCTCDecoder, JasperEncoderDecoder
from parts.features import audio_from_file
import torch
import torch.nn as nn
import apex
from apex import amp
import random
import numpy as np
import pickle
import time
import os
def parse_args():
parser = argparse.ArgumentParser(description='Jasper')
parser.register("type", "bool", lambda x: x.lower() in ("yes", "true", "t", "1"))
parser.add_argument("--local_rank", default=None, type=int)
parser.add_argument("--batch_size", default=16, type=int, help='data batch size')
parser.add_argument("--steps", default=None, help='if not specified do evaluation on full dataset. otherwise only evaluates the specified number of iterations for each worker', type=int)
parser.add_argument("--model_toml", type=str, help='relative model configuration path given dataset folder')
parser.add_argument("--dataset_dir", type=str, help='absolute path to dataset folder')
parser.add_argument("--val_manifest", type=str, help='relative path to evaluation dataset manifest file')
parser.add_argument("--ckpt", default=None, type=str, required=True, help='path to model checkpoint')
parser.add_argument("--max_duration", default=None, type=float, help='maximum duration of sequences. if None uses attribute from model configuration file')
parser.add_argument("--pad_to", default=None, type=int, help="default is pad to value as specified in model configurations. if -1 pad to maximum duration. If > 0 pad batch to next multiple of value")
parser.add_argument("--fp16", action='store_true', help='use half precision')
parser.add_argument("--pyt_fp16", action='store_true', help='use half precision')
parser.add_argument("--cudnn_benchmark", action='store_true', help="enable cudnn benchmark")
parser.add_argument("--save_prediction", type=str, default=None, help="if specified saves predictions in text form at this location")
parser.add_argument("--logits_save_to", default=None, type=str, help="if specified will save logits to path")
parser.add_argument("--seed", default=42, type=int, help='seed')
parser.add_argument("--masked_fill", type="bool", help="Overrides the masked_fill option for the Encoder")
parser.add_argument("--output_dir", default="results/", type=str, help="Output directory to store exported models. Only used if --export_model is used")
parser.add_argument("--export_model", action='store_true', help="Exports the audio_featurizer, encoder and decoder using torch.jit to the output_dir")
parser.add_argument("--wav", type=str, help='absolute path to .wav file (16KHz)')
return parser.parse_args()
def calc_wer(data_layer, audio_processor,
encoderdecoder, greedy_decoder,
labels, args):
encoderdecoder = encoderdecoder.module if hasattr(encoderdecoder, 'module') else encoderdecoder
with torch.no_grad():
# reset global_var_dict - results of evaluation will be stored there
_global_var_dict = {
'predictions': [],
'transcripts': [],
'logits' : [],
}
# Evaluation mini-batch for loop
for it, data in enumerate(tqdm(data_layer.data_iterator)):
tensors = []
for d in data:
tensors.append(d.cuda())
t_audio_signal_e, t_a_sig_length_e, t_transcript_e, t_transcript_len_e = tensors
t_processed_signal = audio_processor(t_audio_signal_e, t_a_sig_length_e)
t_log_probs_e, _ = encoderdecoder.infer(t_processed_signal)
t_predictions_e = greedy_decoder(t_log_probs_e)
values_dict = dict(
predictions=[t_predictions_e],
transcript=[t_transcript_e],
transcript_length=[t_transcript_len_e],
output=[t_log_probs_e]
)
# values_dict will contain results from all workers
process_evaluation_batch(values_dict, _global_var_dict, labels=labels)
if args.steps is not None and it + 1 >= args.steps:
break
# final aggregation (over minibatches) and logging of results
wer, _ = process_evaluation_epoch(_global_var_dict)
return wer, _global_var_dict
def jit_export(
audio, audio_len,
audio_processor,
encoderdecoder,
greedy_decoder,
args):
print("##############")
module_name = "{}_{}".format(os.path.basename(args.model_toml), "fp16" if args.fp16 else "fp32")
if args.masked_fill is not None and args.masked_fill == False:
module_name = module_name + "_noMaskConv"
# Export just the featurizer
print("exporting featurizer ...")
traced_module_feat = torch.jit.script(audio_processor)
traced_module_feat.save(os.path.join(args.output_dir, module_name + "_feat.pt"))
# Export just the acoustic model
print("exporting acoustic model ...")
inp_postFeat, _ = audio_processor(audio, audio_len)
traced_module_acoustic = torch.jit.trace(encoderdecoder, inp_postFeat)
traced_module_acoustic.save(os.path.join(args.output_dir, module_name + "_acoustic.pt"))
# Export just the decoder
print("exporting decoder ...")
inp_postAcoustic = encoderdecoder(inp_postFeat)
traced_module_decode = torch.jit.script(greedy_decoder, inp_postAcoustic)
traced_module_decode.save(os.path.join(args.output_dir, module_name + "_decoder.pt"))
print("JIT export complete")
return traced_module_feat, traced_module_acoustic, traced_module_decode
def run_once(audio_processor, encoderdecoder, greedy_decoder, audio, audio_len, labels):
features = audio_processor(audio, audio_len)
torch.cuda.synchronize()
t0 = time.perf_counter()
t_log_probs_e = encoderdecoder(features[0])
torch.cuda.synchronize()
t1 = time.perf_counter()
t_predictions_e = greedy_decoder(log_probs=t_log_probs_e)
hypotheses = __ctc_decoder_predictions_tensor(t_predictions_e, labels=labels)
print("INFERENCE TIME\t\t: {} ms".format((t1-t0)*1000.0))
print("TRANSCRIPT\t\t:", hypotheses[0])
def eval(
data_layer,
audio_processor,
encoderdecoder,
greedy_decoder,
labels,
multi_gpu,
args):
"""performs inference / evaluation
Args:
data_layer: data layer object that holds data loader
audio_processor: data processing module
encoderdecoder: acoustic model
greedy_decoder: greedy decoder
labels: list of labels as output vocabulary
multi_gpu: true if using multiple gpus
args: script input arguments
"""
logits_save_to=args.logits_save_to
with torch.no_grad():
if args.wav:
audio, audio_len = audio_from_file(args.wav)
run_once(audio_processor, encoderdecoder, greedy_decoder, audio, audio_len, labels)
if args.export_model:
jit_audio_processor, jit_encoderdecoder, jit_greedy_decoder = jit_export(audio, audio_len, audio_processor,
encoderdecoder,
greedy_decoder,args)
run_once(jit_audio_processor, jit_encoderdecoder, jit_greedy_decoder, audio, audio_len, labels)
return
wer, _global_var_dict = calc_wer(data_layer, audio_processor, encoderdecoder, greedy_decoder, labels, args)
if (not multi_gpu or (multi_gpu and torch.distributed.get_rank() == 0)):
print("==========>>>>>>Evaluation WER: {0}\n".format(wer))
if args.save_prediction is not None:
with open(args.save_prediction, 'w') as fp:
fp.write('\n'.join(_global_var_dict['predictions']))
if logits_save_to is not None:
logits = []
for batch in _global_var_dict["logits"]:
for i in range(batch.shape[0]):
logits.append(batch[i].cpu().numpy())
with open(logits_save_to, 'wb') as f:
pickle.dump(logits, f, protocol=pickle.HIGHEST_PROTOCOL)
# if args.export_model:
# feat, acoustic, decoder = jit_export(inp, audio_processor, encoderdecoder, greedy_decoder,args)
# wer_after = calc_wer(data_layer, feat, acoustic, decoder, labels, args)
# print("===>>>Before WER: {0}".format(wer))
# print("===>>>Traced WER: {0}".format(wer_after))
# print("===>>>Diff : {0} %".format((wer_after - wer_before) * 100.0 / wer_before))
# print("")
def main(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.benchmark = args.cudnn_benchmark
print("CUDNN BENCHMARK ", args.cudnn_benchmark)
assert(torch.cuda.is_available())
if args.local_rank is not None:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
multi_gpu = args.local_rank is not None
if multi_gpu:
print("DISTRIBUTED with ", torch.distributed.get_world_size())
if args.fp16:
optim_level = 3
else:
optim_level = 0
jasper_model_definition = toml.load(args.model_toml)
dataset_vocab = jasper_model_definition['labels']['labels']
ctc_vocab = add_ctc_labels(dataset_vocab)
val_manifest = args.val_manifest
featurizer_config = jasper_model_definition['input_eval']
featurizer_config["optimization_level"] = optim_level
featurizer_config["fp16"] = args.fp16
args.use_conv_mask = jasper_model_definition['encoder'].get('convmask', True)
if args.masked_fill is not None:
print("{} masked_fill".format("Enabling" if args.masked_fill else "Disabling"))
jasper_model_definition["encoder"]["conv_mask"] = args.masked_fill
if args.max_duration is not None:
featurizer_config['max_duration'] = args.max_duration
if args.pad_to is not None:
featurizer_config['pad_to'] = args.pad_to
if featurizer_config['pad_to'] == "max":
featurizer_config['pad_to'] = -1
print('=== model_config ===')
print_dict(jasper_model_definition)
print()
print('=== feature_config ===')
print_dict(featurizer_config)
print()
data_layer = None
if args.wav is None:
data_layer = AudioToTextDataLayer(
dataset_dir=args.dataset_dir,
featurizer_config=featurizer_config,
manifest_filepath=val_manifest,
labels=dataset_vocab,
batch_size=args.batch_size,
pad_to_max=featurizer_config['pad_to'] == -1,
shuffle=False,
multi_gpu=multi_gpu)
audio_preprocessor = AudioPreprocessing(**featurizer_config)
encoderdecoder = JasperEncoderDecoder(jasper_model_definition=jasper_model_definition, feat_in=1024, num_classes=len(ctc_vocab))
if args.ckpt is not None:
print("loading model from ", args.ckpt)
if os.path.isdir(args.ckpt):
exit(0)
else:
checkpoint = torch.load(args.ckpt, map_location="cpu")
for k in audio_preprocessor.state_dict().keys():
checkpoint['state_dict'][k] = checkpoint['state_dict'].pop("audio_preprocessor." + k)
audio_preprocessor.load_state_dict(checkpoint['state_dict'], strict=False)
encoderdecoder.load_state_dict(checkpoint['state_dict'], strict=False)
greedy_decoder = GreedyCTCDecoder()
# print("Number of parameters in encoder: {0}".format(model.jasper_encoder.num_weights()))
if args.wav is None:
N = len(data_layer)
step_per_epoch = math.ceil(N / (args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size())))
if args.steps is not None:
print('-----------------')
print('Have {0} examples to eval on.'.format(args.steps * args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size())))
print('Have {0} steps / (gpu * epoch).'.format(args.steps))
print('-----------------')
else:
print('-----------------')
print('Have {0} examples to eval on.'.format(N))
print('Have {0} steps / (gpu * epoch).'.format(step_per_epoch))
print('-----------------')
print ("audio_preprocessor.normalize: ", audio_preprocessor.featurizer.normalize)
audio_preprocessor.cuda()
encoderdecoder.cuda()
if args.fp16:
encoderdecoder = amp.initialize( models=encoderdecoder,
opt_level=AmpOptimizations[optim_level])
encoderdecoder = model_multi_gpu(encoderdecoder, multi_gpu)
audio_preprocessor.eval()
encoderdecoder.eval()
greedy_decoder.eval()
eval(
data_layer=data_layer,
audio_processor=audio_preprocessor,
encoderdecoder=encoderdecoder,
greedy_decoder=greedy_decoder,
labels=ctc_vocab,
args=args,
multi_gpu=multi_gpu)
if __name__=="__main__":
args = parse_args()
print_dict(vars(args))
main(args)