-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
403 lines (349 loc) · 18.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import itertools
import os
import time
import toml
import torch
import apex
from apex import amp
import random
import numpy as np
import math
from dataset import AudioToTextDataLayer
from helpers import monitor_asr_train_progress, process_evaluation_batch, process_evaluation_epoch, add_ctc_labels, AmpOptimizations, model_multi_gpu, print_dict, print_once
from model import AudioPreprocessing, CTCLossNM, GreedyCTCDecoder, Jasper
from optimizers import Novograd, AdamW
def lr_policy(initial_lr, step, N):
"""
learning rate decay
Args:
initial_lr: base learning rate
step: current iteration number
N: total number of iterations over which learning rate is decayed
"""
min_lr = 0.00001
res = initial_lr * ((N - step) / N) ** 2
return max(res, min_lr)
def save(model, optimizer, epoch, output_dir):
"""
Saves model checkpoint
Args:
model: model
optimizer: optimizer
epoch: epoch of model training
output_dir: path to save model checkpoint
"""
class_name = model.__class__.__name__
unix_time = time.time()
file_name = "{0}_{1}-epoch-{2}.pt".format(class_name, unix_time, epoch)
print_once("Saving module {0} in {1}".format(class_name, os.path.join(output_dir, file_name)))
if (not torch.distributed.is_initialized() or (torch.distributed.is_initialized() and torch.distributed.get_rank() == 0)):
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
save_checkpoint={
'epoch': epoch,
'state_dict': model_to_save.state_dict(),
'optimizer': optimizer.state_dict()
}
torch.save(save_checkpoint, os.path.join(output_dir, file_name))
print_once('Saved.')
def train(
data_layer,
data_layer_eval,
model,
ctc_loss,
greedy_decoder,
optimizer,
optim_level,
labels,
multi_gpu,
args,
fn_lr_policy=None):
"""Trains model
Args:
data_layer: training data layer
data_layer_eval: evaluation data layer
model: model ( encapsulates data processing, encoder, decoder)
ctc_loss: loss function
greedy_decoder: greedy ctc decoder
optimizer: optimizer
optim_level: AMP optimization level
labels: list of output labels
multi_gpu: true if multi gpu training
args: script input argument list
fn_lr_policy: learning rate adjustment function
"""
def eval():
"""Evaluates model on evaluation dataset
"""
with torch.no_grad():
_global_var_dict = {
'EvalLoss': [],
'predictions': [],
'transcripts': [],
}
eval_dataloader = data_layer_eval.data_iterator
for data in eval_dataloader:
tensors = []
for d in data:
if isinstance(d, torch.Tensor):
tensors.append(d.cuda())
else:
tensors.append(d)
t_audio_signal_e, t_a_sig_length_e, t_transcript_e, t_transcript_len_e = tensors
model.eval()
if optim_level == 1:
with amp.disable_casts():
t_processed_signal_e, t_processed_sig_length_e = audio_preprocessor(t_audio_signal_e, t_a_sig_length_e)
else:
t_processed_signal_e, t_processed_sig_length_e = audio_preprocessor(t_audio_signal_e, t_a_sig_length_e)
if jasper_encoder.use_conv_mask:
t_log_probs_e, t_encoded_len_e = model.forward((t_processed_signal_e, t_processed_sig_length_e))
else:
t_log_probs_e = model.forward(t_processed_signal_e)
t_loss_e = ctc_loss(log_probs=t_log_probs_e, targets=t_transcript_e, input_length=t_encoded_len_e, target_length=t_transcript_len_e)
t_predictions_e = greedy_decoder(log_probs=t_log_probs_e)
values_dict = dict(
loss=[t_loss_e],
predictions=[t_predictions_e],
transcript=[t_transcript_e],
transcript_length=[t_transcript_len_e]
)
process_evaluation_batch(values_dict, _global_var_dict, labels=labels)
# final aggregation across all workers and minibatches) and logging of results
wer, eloss = process_evaluation_epoch(_global_var_dict)
print_once("==========>>>>>>Evaluation Loss: {0}\n".format(eloss))
print_once("==========>>>>>>Evaluation WER: {0}\n".format(wer))
print_once("Starting .....")
start_time = time.time()
train_dataloader = data_layer.data_iterator
epoch = args.start_epoch
step = epoch * args.step_per_epoch
audio_preprocessor = model.module.audio_preprocessor if hasattr(model, 'module') else model.audio_preprocessor
data_spectr_augmentation = model.module.data_spectr_augmentation if hasattr(model, 'module') else model.data_spectr_augmentation
jasper_encoder = model.module.jasper_encoder if hasattr(model, 'module') else model.jasper_encoder
while True:
if multi_gpu:
data_layer.sampler.set_epoch(epoch)
print_once("Starting epoch {0}, step {1}".format(epoch, step))
last_epoch_start = time.time()
batch_counter = 0
average_loss = 0
for data in train_dataloader:
tensors = []
for d in data:
if isinstance(d, torch.Tensor):
tensors.append(d.cuda())
else:
tensors.append(d)
if batch_counter == 0:
if fn_lr_policy is not None:
adjusted_lr = fn_lr_policy(step)
for param_group in optimizer.param_groups:
param_group['lr'] = adjusted_lr
optimizer.zero_grad()
last_iter_start = time.time()
t_audio_signal_t, t_a_sig_length_t, t_transcript_t, t_transcript_len_t = tensors
model.train()
if optim_level == 1:
with amp.disable_casts():
t_processed_signal_t, t_processed_sig_length_t = audio_preprocessor(t_audio_signal_t, t_a_sig_length_t)
else:
t_processed_signal_t, t_processed_sig_length_t = audio_preprocessor(t_audio_signal_t, t_a_sig_length_t)
t_processed_signal_t = data_spectr_augmentation(t_processed_signal_t)
if jasper_encoder.use_conv_mask:
t_log_probs_t, t_encoded_len_t = model.forward((t_processed_signal_t, t_processed_sig_length_t))
else:
t_log_probs_t = model.forward(t_processed_signal_t)
t_loss_t = ctc_loss(log_probs=t_log_probs_t, targets=t_transcript_t, input_length=t_encoded_len_t, target_length=t_transcript_len_t)
if args.gradient_accumulation_steps > 1:
t_loss_t = t_loss_t / args.gradient_accumulation_steps
if optim_level >=0 and optim_level <=3:
with amp.scale_loss(t_loss_t, optimizer) as scaled_loss:
scaled_loss.backward()
else:
t_loss_t.backward()
batch_counter += 1
average_loss += t_loss_t.item()
if batch_counter % args.gradient_accumulation_steps == 0:
optimizer.step()
if step % args.train_frequency == 0:
t_predictions_t = greedy_decoder(log_probs=t_log_probs_t)
e_tensors = [t_predictions_t, t_transcript_t, t_transcript_len_t]
train_wer = monitor_asr_train_progress(e_tensors, labels=labels)
print_once("Loss@Step: {0} ::::::: {1}".format(step, str(average_loss)))
print_once("Step time: {0} seconds".format(time.time() - last_iter_start))
if step > 0 and step % args.eval_frequency == 0:
print_once("Doing Evaluation ....................... ...... ... .. . .")
eval()
step += 1
batch_counter = 0
average_loss = 0
if args.num_steps is not None and step >= args.num_steps:
break
if args.num_steps is not None and step >= args.num_steps:
break
print_once("Finished epoch {0} in {1}".format(epoch, time.time() - last_epoch_start))
epoch += 1
if epoch % args.save_frequency == 0 and epoch > 0:
save(model, optimizer, epoch, output_dir=args.output_dir)
if args.num_steps is None and epoch >= args.num_epochs:
break
print_once("Done in {0}".format(time.time() - start_time))
print_once("Final Evaluation ....................... ...... ... .. . .")
eval()
save(model, optimizer, epoch, output_dir=args.output_dir)
def main(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
assert(torch.cuda.is_available())
torch.backends.cudnn.benchmark = args.cudnn
# set up distributed training
if args.local_rank is not None:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(backend='nccl', init_method='env://')
multi_gpu = torch.distributed.is_initialized()
if multi_gpu:
print_once("DISTRIBUTED TRAINING with {} gpus".format(torch.distributed.get_world_size()))
# define amp optimiation level
if args.fp16:
optim_level = 1
else:
optim_level = 0
jasper_model_definition = toml.load(args.model_toml)
dataset_vocab = jasper_model_definition['labels']['labels']
ctc_vocab = add_ctc_labels(dataset_vocab)
train_manifest = args.train_manifest
val_manifest = args.val_manifest
featurizer_config = jasper_model_definition['input']
featurizer_config_eval = jasper_model_definition['input_eval']
featurizer_config["optimization_level"] = optim_level
featurizer_config_eval["optimization_level"] = optim_level
sampler_type = featurizer_config.get("sampler", 'default')
perturb_config = jasper_model_definition.get('perturb', None)
if args.pad_to_max:
assert(args.max_duration > 0)
featurizer_config['max_duration'] = args.max_duration
featurizer_config_eval['max_duration'] = args.max_duration
featurizer_config['pad_to'] = -1
featurizer_config_eval['pad_to'] = -1
print_once('model_config')
print_dict(jasper_model_definition)
if args.gradient_accumulation_steps < 1:
raise ValueError('Invalid gradient accumulation steps parameter {}'.format(args.gradient_accumulation_steps))
if args.batch_size % args.gradient_accumulation_steps != 0:
raise ValueError('gradient accumulation step {} is not divisible by batch size {}'.format(args.gradient_accumulation_steps, args.batch_size))
data_layer = AudioToTextDataLayer(
dataset_dir=args.dataset_dir,
featurizer_config=featurizer_config,
perturb_config=perturb_config,
manifest_filepath=train_manifest,
labels=dataset_vocab,
batch_size=args.batch_size // args.gradient_accumulation_steps,
multi_gpu=multi_gpu,
pad_to_max=args.pad_to_max,
sampler=sampler_type)
data_layer_eval = AudioToTextDataLayer(
dataset_dir=args.dataset_dir,
featurizer_config=featurizer_config_eval,
manifest_filepath=val_manifest,
labels=dataset_vocab,
batch_size=args.batch_size,
multi_gpu=multi_gpu,
pad_to_max=args.pad_to_max
)
model = Jasper(feature_config=featurizer_config, jasper_model_definition=jasper_model_definition, feat_in=1024, num_classes=len(ctc_vocab))
if args.ckpt is not None:
print_once("loading model from {}".format(args.ckpt))
checkpoint = torch.load(args.ckpt, map_location="cpu")
model.load_state_dict(checkpoint['state_dict'], strict=True)
args.start_epoch = checkpoint['epoch']
else:
args.start_epoch = 0
ctc_loss = CTCLossNM( num_classes=len(ctc_vocab))
greedy_decoder = GreedyCTCDecoder()
print_once("Number of parameters in encoder: {0}".format(model.jasper_encoder.num_weights()))
print_once("Number of parameters in decode: {0}".format(model.jasper_decoder.num_weights()))
N = len(data_layer)
if sampler_type == 'default':
args.step_per_epoch = math.ceil(N / (args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size())))
elif sampler_type == 'bucket':
args.step_per_epoch = int(len(data_layer.sampler) / args.batch_size )
print_once('-----------------')
print_once('Have {0} examples to train on.'.format(N))
print_once('Have {0} steps / (gpu * epoch).'.format(args.step_per_epoch))
print_once('-----------------')
fn_lr_policy = lambda s: lr_policy(args.lr, s, args.num_epochs * args.step_per_epoch)
model.cuda()
if args.optimizer_kind == "novograd":
optimizer = Novograd(model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay)
elif args.optimizer_kind == "adam":
optimizer = AdamW(model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay)
else:
raise ValueError("invalid optimizer choice: {}".format(args.optimizer_kind))
if optim_level >= 0 and optim_level <=3:
model, optimizer = amp.initialize(
min_loss_scale=1.0,
models=model,
optimizers=optimizer,
opt_level=AmpOptimizations[optim_level])
if args.ckpt is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
model = model_multi_gpu(model, multi_gpu)
train(data_layer, data_layer_eval, model, \
ctc_loss=ctc_loss, \
greedy_decoder=greedy_decoder, \
optimizer=optimizer, \
labels=ctc_vocab, \
optim_level=optim_level, \
multi_gpu=multi_gpu, \
fn_lr_policy=fn_lr_policy if args.lr_decay else None, \
args=args)
def parse_args():
parser = argparse.ArgumentParser(description='Jasper')
parser.add_argument("--local_rank", default=None, type=int)
parser.add_argument("--batch_size", default=16, type=int, help='data batch size')
parser.add_argument("--num_epochs", default=10, type=int, help='number of training epochs. if number of steps if specified will overwrite this')
parser.add_argument("--num_steps", default=None, type=int, help='if specified overwrites num_epochs and will only train for this number of iterations')
parser.add_argument("--save_freq", dest="save_frequency", default=300, type=int, help='number of epochs until saving checkpoint. will save at the end of training too.')
parser.add_argument("--eval_freq", dest="eval_frequency", default=200, type=int, help='number of iterations until doing evaluation on full dataset')
parser.add_argument("--train_freq", dest="train_frequency", default=25, type=int, help='number of iterations until printing training statistics on the past iteration')
parser.add_argument("--lr", default=1e-3, type=float, help='learning rate')
parser.add_argument("--weight_decay", default=1e-3, type=float, help='weight decay rate')
parser.add_argument("--train_manifest", type=str, required=True, help='relative path given dataset folder of training manifest file')
parser.add_argument("--model_toml", type=str, required=True, help='relative path given dataset folder of model configuration file')
parser.add_argument("--val_manifest", type=str, required=True, help='relative path given dataset folder of evaluation manifest file')
parser.add_argument("--max_duration", type=float, help='maximum duration of audio samples for training and evaluation')
parser.add_argument("--pad_to_max", action="store_true", default=False, help="pad sequence to max_duration")
parser.add_argument("--gradient_accumulation_steps", default=1, type=int, help='number of accumulation steps')
parser.add_argument("--optimizer", dest="optimizer_kind", default="novograd", type=str, help='optimizer')
parser.add_argument("--dataset_dir", dest="dataset_dir", required=True, type=str, help='root dir of dataset')
parser.add_argument("--lr_decay", action="store_true", default=False, help='use learning rate decay')
parser.add_argument("--cudnn", action="store_true", default=False, help="enable cudnn benchmark")
parser.add_argument("--fp16", action="store_true", default=False, help="use mixed precision training")
parser.add_argument("--output_dir", type=str, required=True, help='saves results in this directory')
parser.add_argument("--ckpt", default=None, type=str, help="if specified continues training from given checkpoint. Otherwise starts from beginning")
parser.add_argument("--seed", default=42, type=int, help='seed')
args=parser.parse_args()
return args
if __name__=="__main__":
args = parse_args()
print_dict(vars(args))
main(args)