forked from balancer/balancer-v3-monorepo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWeightedMath.sol
253 lines (220 loc) · 13.6 KB
/
WeightedMath.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.24;
import { FixedPoint } from "./FixedPoint.sol";
/**
* @notice Implementation of Balancer Weighted Math, essentially unchanged since v1.
* @dev It is a generalization of the x * y = k constant product formula, accounting for cases with more than two
* tokens, and weights that are not 50/50. See https://docs.qr68.com/tech-implementations/weighted-math.
*
* For security reasons, to help ensure that for all possible "round trip" paths the caller always receives the same
* or fewer tokens than supplied, we have chosen the rounding direction to favor the protocol in all cases.
*/
library WeightedMath {
using FixedPoint for uint256;
/// @notice User attempted to extract a disproportionate amountOut of tokens from a pool.
error MaxOutRatio();
/// @notice User attempted to add a disproportionate amountIn of tokens to a pool.
error MaxInRatio();
/**
* @notice Error thrown when the calculated invariant is zero, indicating an issue with the invariant calculation.
* @dev Most commonly, this happens when a token balance is zero.
*/
error ZeroInvariant();
// Pool limits that arise from limitations in the fixed point power function. When computing x^y, the valid range
// of `x` is -41 (ExpMin) to 130 (ExpMax). See `LogExpMath.sol` for the derivation of these values.
//
// Invariant calculation:
// In computing `balance^normalizedWeight`, `log(balance) * normalizedWeight` must fall within the `pow` function
// bounds described above. Since 0.01 <= normalizedWeight <= 0.99, the balance is constrained to the range between
// e^(ExpMin) and e^(ExpMax).
//
// This corresponds to 10^(-18) < balance < 2^(188.56). Since the maximum balance is 2^(128) - 1, the invariant
// calculation is unconstrained by the `pow` function limits.
//
// It's a different story with `computeBalanceOutGivenInvariant` (inverse invariant):
// This uses the power function to raise the invariant ratio to the power of 1/weight. Similar to the computation
// for the invariant, this means the following expression must hold:
// ExpMin < log(invariantRatio) * 1/weight < ExpMax
//
// Given the valid range of weights (i.e., 1 < 1/weight < 100), we have:
// ExpMin/100 < log(invariantRatio) < ExpMax/100, or e^(-0.41) < invariantRatio < e^(1.3). Numerically, this
// constrains the invariantRatio to between 0.661 and 3.695. For an added safety margin, we set the limits to
// 0.7 < invariantRatio < 3.
// Swap limits: amounts swapped may not be larger than this percentage of the total balance.
uint256 internal constant _MAX_IN_RATIO = 30e16; // 30%
uint256 internal constant _MAX_OUT_RATIO = 30e16; // 30%
// Invariant growth limit: non-proportional add cannot cause the invariant to increase by more than this ratio.
uint256 internal constant _MAX_INVARIANT_RATIO = 300e16; // 300%
// Invariant shrink limit: non-proportional remove cannot cause the invariant to decrease by less than this ratio.
uint256 internal constant _MIN_INVARIANT_RATIO = 70e16; // 70%
/**
* @notice Compute the invariant, rounding down.
* @dev The invariant functions are called by the Vault during various liquidity operations, and require a specific
* rounding direction in order to ensure safety (i.e., that the final result is always rounded in favor of the
* protocol. The invariant (i.e., all token balances) must always be greater than 0, or it will revert.
*
* @param normalizedWeights The pool token weights, sorted in token registration order
* @param balances The pool token balances, sorted in token registration order
* @return invariant The invariant, rounded down
*/
function computeInvariantDown(
uint256[] memory normalizedWeights,
uint256[] memory balances
) internal pure returns (uint256 invariant) {
/**********************************************************************************************
// invariant _____ //
// wi = weight index i | | wi //
// bi = balance index i | | bi ^ = i //
// i = invariant //
**********************************************************************************************/
invariant = FixedPoint.ONE;
for (uint256 i = 0; i < normalizedWeights.length; ++i) {
invariant = invariant.mulDown(balances[i].powDown(normalizedWeights[i]));
}
if (invariant == 0) {
revert ZeroInvariant();
}
}
/**
* @notice Compute the invariant, rounding up.
* @dev The invariant functions are called by the Vault during various liquidity operations, and require a specific
* rounding direction in order to ensure safety (i.e., that the final result is always rounded in favor of the
* protocol. The invariant (i.e., all token balances) must always be greater than 0, or it will revert.
*
* @param normalizedWeights The pool token weights, sorted in token registration order
* @param balances The pool token balances, sorted in token registration order
* @return invariant The invariant, rounded up
*/
function computeInvariantUp(
uint256[] memory normalizedWeights,
uint256[] memory balances
) internal pure returns (uint256 invariant) {
/**********************************************************************************************
// invariant _____ //
// wi = weight index i | | wi //
// bi = balance index i | | bi ^ = i //
// i = invariant //
**********************************************************************************************/
invariant = FixedPoint.ONE;
for (uint256 i = 0; i < normalizedWeights.length; ++i) {
invariant = invariant.mulUp(balances[i].powUp(normalizedWeights[i]));
}
if (invariant == 0) {
revert ZeroInvariant();
}
}
/**
* @notice Compute a token balance after a liquidity operation, given the current balance and invariant ratio.
* @dev This is called as part of the "inverse invariant" `computeBalance` calculation.
* @param currentBalance The current balance of the token
* @param weight The weight of the token
* @param invariantRatio The invariant ratio (i.e., new/old; will be > 1 for add; < 1 for remove)
* @return newBalance The adjusted token balance after the operation
*/
function computeBalanceOutGivenInvariant(
uint256 currentBalance,
uint256 weight,
uint256 invariantRatio
) internal pure returns (uint256 newBalance) {
/******************************************************************************************
// calculateBalanceGivenInvariant //
// o = balanceOut //
// b = balanceIn (1 / w) //
// w = weight o = b * i ^ //
// i = invariantRatio //
******************************************************************************************/
// Rounds result up overall, rounding up the two individual steps:
// - balanceRatio = invariantRatio ^ (1 / weight)
// - newBalance = balance * balanceRatio
//
// Regarding `balanceRatio`, the exponent is always > FP(1), but the invariant ratio can be either greater or
// lower than FP(1) depending on whether this is solving an `add` or a `remove` operation.
// - For i > 1, we need to round the exponent up, as i^x is monotonically increasing for i > 1.
// - For i < 1, we need to round the exponent down, as as i^x is monotonically decreasing for i < 1.
function(uint256, uint256) internal pure returns (uint256) divUpOrDown = invariantRatio > 1
? FixedPoint.divUp
: FixedPoint.divDown;
// Calculate by how much the token balance has to increase to match the invariantRatio.
uint256 balanceRatio = invariantRatio.powUp(divUpOrDown(FixedPoint.ONE, weight));
return currentBalance.mulUp(balanceRatio);
}
/**
* @notice Compute the `amountOut` of tokenOut in a swap, given the current balances and weights.
* @param balanceIn The current balance of `tokenIn`
* @param weightIn The weight of `tokenIn`
* @param balanceOut The current balance of `tokenOut`
* @param weightOut The weight of `tokenOut`
* @param amountIn The exact amount of `tokenIn` (i.e., the amount given in an ExactIn swap)
* @return amountOut The calculated amount of `tokenOut` returned in an ExactIn swap
*/
function computeOutGivenExactIn(
uint256 balanceIn,
uint256 weightIn,
uint256 balanceOut,
uint256 weightOut,
uint256 amountIn
) internal pure returns (uint256 amountOut) {
/**********************************************************************************************
// outGivenExactIn //
// aO = amountOut //
// bO = balanceOut //
// bI = balanceIn / / bI \ (wI / wO) \ //
// aI = amountIn aO = bO * | 1 - | -------------------------- | ^ | //
// wI = weightIn \ \ ( bI + aI ) / / //
// wO = weightOut //
**********************************************************************************************/
// Amount out, so we round down overall.
// The multiplication rounds down, and the subtrahend (power) rounds up (so the base rounds up too).
// Because bI / (bI + aI) <= 1, the exponent rounds down.
// Cannot exceed maximum in ratio.
if (amountIn > balanceIn.mulDown(_MAX_IN_RATIO)) {
revert MaxInRatio();
}
uint256 denominator = balanceIn + amountIn;
uint256 base = balanceIn.divUp(denominator);
uint256 exponent = weightIn.divDown(weightOut);
uint256 power = base.powUp(exponent);
// Because of rounding up, power can be greater than one. Using complement prevents reverts.
return balanceOut.mulDown(power.complement());
}
/**
* @notice Compute the `amountIn` of tokenIn in a swap, given the current balances and weights.
* @param balanceIn The current balance of `tokenIn`
* @param weightIn The weight of `tokenIn`
* @param balanceOut The current balance of `tokenOut`
* @param weightOut The weight of `tokenOut`
* @param amountOut The exact amount of `tokenOut` (i.e., the amount given in an ExactOut swap)
* @return amountIn The calculated amount of `tokenIn` returned in an ExactOut swap
*/
function computeInGivenExactOut(
uint256 balanceIn,
uint256 weightIn,
uint256 balanceOut,
uint256 weightOut,
uint256 amountOut
) internal pure returns (uint256 amountIn) {
/**********************************************************************************************
// inGivenExactOut //
// aO = amountOut //
// bO = balanceOut //
// bI = balanceIn / / bO \ (wO / wI) \ //
// aI = amountIn aI = bI * | | -------------------------- | ^ - 1 | //
// wI = weightIn \ \ ( bO - aO ) / / //
// wO = weightOut //
**********************************************************************************************/
// Amount in, so we round up overall.
// The multiplication rounds up, and the power rounds up (so the base rounds up too).
// Because b0 / (b0 - a0) >= 1, the exponent rounds up.
// Cannot exceed maximum out ratio.
if (amountOut > balanceOut.mulDown(_MAX_OUT_RATIO)) {
revert MaxOutRatio();
}
uint256 base = balanceOut.divUp(balanceOut - amountOut);
uint256 exponent = weightOut.divUp(weightIn);
uint256 power = base.powUp(exponent);
// Because the base is larger than one (and the power rounds up), the power should always be larger than one, so
// the following subtraction should never revert.
uint256 ratio = power - FixedPoint.ONE;
return balanceIn.mulUp(ratio);
}
}